Conference on “Emerging Trends in Applied Science, Engineering and Technology”
Organized by MDSG Research Group, Malaysia
Conference on “Emerging Trends in Applied Science, Engineering and Technology”
Organized by MDSG Research Group, Malaysia
I. Azmi, F., Skwarczynski, M., & Toth, I. (2016). Towards the development of synthetic antibiotics: designs inspired by natural antimicrobial peptides. Current Medicinal Chemistry, 23(41): 4610–4624.
II. Bodendorf, F., & Kaiser, C. (2010). Detecting opinion leaders and trends in online communities. In Proceedings of the 2010 Fourth International Conference on Digital Society (pp. 124–129). IEEE.
III. Chin, C. (2015). Patients can’t get enough of antibiotics. The Star Online. On the WWW, Oct 2018. URL https://www.thestar.com.my/news/nation/2015/04/26/patients-cant-get-enough-of-antibiotics-demand-continues-to-rise-in-malaysia-despite-warnings-on-dan/
IV. Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design elements to gamefulness: defining gamification. In Proceedings of the 15th international academic MindTrek conference: Envisioning future media environments (pp. 9–15). ACM.
V. Ilhan, E., Sener, B., & Hacihabiboğlu, H. (2016). Creating Awareness of Sleep-Wake Hours by Gamification. In International Conference on Persuasive Technology (pp. 122–133). Springer.
VI. Islahudin, F., Madihah, A., Tamezi, A., & Shah, N. M. (2014). Knowledge, attitudes and practices about antibiotic use among the general public in Malaysia. Southeast Asian Journal of Tropical Medicine and Public Health, 45(6): 1474.
VII. Johnson, D., Deterding, S., Kuhn, K.-A., Staneva, A., Stoyanov, S., & Hides, L. (2016). Gamification for health and wellbeing: A systematic review of the literature. Internet Interventions, 6: 89–106.
VIII. Koo, H. S., & Omar, M. S. (2018). Knowledge and attitude towards antibiotic use and awareness on antibiotic resistance among older people in Malaysia. In The 2nd International Conference On Pharmacy Education And Research Network Of Asean (ASEAN PharmNET 2017).
IX. Lim, K. K., & Teh, C. C. (2012). A cross sectional study of public knowledge and attitude towards antibiotics in Putrajaya, Malaysia. Southern Med Review, 5(2): 26–33.
X. Malaysian Communications and Multimedia Commission. (2017). Handphone Users Survey. On the WWW, July 2018. URL https://www.skmm.gov.my/skmmgovmy/media/General/pdf/HPUS2017.pdf
XI. Mekler, E. D., Brühlmann, F., Tuch, A. N., & Opwis, K. (2017). Towards understanding the effects of individual gamification elements on intrinsic motivation and performance. Computers in Human Behavior, 71: 525–534.
XII. Mohamed Shah, N., & Abdul Rahim, M. (2017). Parental knowledge, attitudes and practices (KAPs) on the use of antibioticsin children for upper respiratory tract infections (URTIs). International Journal of Pharmacy and Pharmaceutical Sciences; 105–110.
XIII. Morschheuser, B., Hamari, J., Werder, K., & Abe, J. (2017). How to gamify? A method for designing gamification. In Proceedings of the 50th Hawaii International Conference on System Sciences 2017. University of Hawai’i at Manoa.
XIV. NHS. (2016). Antibiotics. On the WWW, June 2018. URL http://www.nhs.uk/conditions/Antibiotics-penicillins/Pages/Introduction.aspx
XV. Norazah, A. (2014). National Surveillance of Antibiotic Resistance Report (NSAR) Malaysia. Ministry of Health Malaysia.
XVI. Owen, J. E., Jaworski, B. K., Kuhn, E., Makin-Byrd, K. N., Ramsey, K. M., & Hoffman, J. E. (2015). mHealth in the wild: using novel data to examine the reach, use, and impact of PTSD coach. JMIR Mental Health, 2(1).
XVII. Pushpa, B. S., Safii, N. S., Hamzah, S. H., Fauzi, N., Yeo, W. K., Koon, P. B., … Ming, C. L. (2018). Development of NutriSportEx TM-interactive sport nutrition based mobile application software. Journal of Fundamental and Applied Sciences, 10(1S): 339–351.
XVIII. Russo, M., Bergami, M., & Morandin, G. (2018). Surviving a day without smartphones. MIT Sloan Management Review, 59(2): 7–9.
XIX. Saam, M., Huttner, B., Harbarth, S., & World Health Organization. (2017). Evaluation of antibiotic awareness campaigns. Geneva, Switzerland: WHO Collaborating Centre on Patient Safety.
XX. Sama, P. R., Eapen, Z. J., Weinfurt, K. P., Shah, B. R., & Schulman, K. A. (2014). An evaluation of mobile health application tools. JMIR MHealth and UHealth, 2(2).
XXI. Sugijarto, D. P., Mukhtar, M., Safie, N., & Sulaiman, R. (2018). Developing Context Awareness Mobile Application for Blood Donation. International Journal on Informatics Visualization, 2(3): 118–126.
XXII. Topik, S. A., Mohamed Basri, Z. D., Lee, K. E., & Ab Wahid, M. (2016). A Review of the Occurrence of Antibiotics and Antibiotics Resistance Bacteria. World Applied Sciences Journal: 1762–1769.
XXIII. Tuten, T. L., & Solomon, M. R. (2017). Social media marketing. SAGE.
XXIV. Ventola, C. L. (2014). Mobile devices and apps for health care professionals: uses and benefits. Pharmacy and Therapeutics, 39(5): 356.
XXV. WHO. (2016). Antibiotic resistance. World Health Organisation.
View | DownloadI. A. Afaghi Khatibi, V. Chevali, S. Feih, and A. P. Mouritz, “Probability analysis of the fire structural resistance of aluminium plate,” Fire Saf. J., vol. 83, pp. 15–24, 2016
II. A. M. Cunliffe and P. T. Williams, “Characterisation of products from the recycling of glass fibre reinforced polyester waste by pyrolysis q,” vol. 82, pp. 2223–2230, 2003
III. A. S. Abu-Bakar and K. A. M. Moinuddin, “Effects of Variation in Heating Rate , Sample Mass and Nitrogen Flow on Chemical Kinetics for Pyrolysis,” 18th Australas. Fluid Mech. Conf., no. December, pp. 18–21, 2012
IV. D. Bücheler, A. Kaiser, and F. Henning, “Using Thermogravimetric Analysis to Determine Carbon Fiber Weight Percentage of Fiber-Reinforced Plastics,” Compos. Part B Eng., vol. 106, pp. 218–223, 2016.
V. G. Oliveux, L. O. Dandy, and G. A. Leeke, “Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties,” Prog. Mater. Sci., vol. 72, pp. 61–99, 2015
VI. K. Tao, S. Vladimir, and E. Tim, “Effect of the Heating Rate on the Thermochemical Behavior and Biofuel Properties of Sewage Sludge Pyrolysis,” Energy Fuels, vol. 30, no. 3, pp. 1564–1570, 2016
VII. L. Ka-Leung, O. O. Adetoyese, C. Kwok-Yuen, L. King-Lung, and H. Chi-Wai, “Modelling pyrolysis with dynamic heating,” Chem. Eng. Sci., vol. 66, no. 24, pp. 6505–6514, 2011
VIII. L. O. Meyer, K. Schulte, and E. Grove-Nielsen, “CFRP-recycling following a pyrolysis route: Process optimization and potentials,” J. Compos. Mater., vol. 43, no. 9, pp. 1121–1132, 2009.
IX. M. Boulanghien, M. R’Mili, G. Bernhart, F. Berthet, and Y. Soudais, “Mechanical Characterization of Carbon Fibres Recycled by Steam Thermolysis: A Statistical Approach,” Adv. Mater. Sci. Eng., vol. 2018, p. 10, 2018
X. M. Holmes, “Global carbon fibre market remains on upward trend,” Reinf. Plast., vol. 58, no. 6, pp. 38–45, 2014
XI. P. Tranchard, F. Samyn, S. Duquesne, B. Estèbe, and S. Bourbigot, “Modelling behaviour of a carbon epoxy composite exposed to fire: Part I-Characterisation of thermophysical properties,” Materials (Basel)., vol. 10, no. 5, 2017
XII. P. Tranchard, S. Duquesne, F. Samyn, B. Estèbe, and S. Bourbigot, “Kinetic analysis of the thermal decomposition of a carbon fibre-reinforced epoxy resin laminate,” J. Anal. Appl. Pyrolysis, vol. 126, no. May, pp. 14–21, 2017.
XIII. S. Feih and A. P. Mouritz, “Tensile properties of carbon fibres and carbon fibre-polymer composites in fire,” Compos. Part A Appl. Sci. Manuf., vol. 43, no. 5, pp. 765–772, 2012.
XIV. S. J. Pickering, “Recycling Technologies For Thermoset Composite Materials,” Adv. Polym. Compos. Struct. Appl. Constr. ACIC 2004, vol. 37, pp. 392–399, 2004
XV. S. Pimenta and S. T. Pinho, “Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook,” Waste Manag., vol. 31, no. 2, pp. 378–392, 2011
XVI. V. L. Sergei and D. W. Edward, “Thermal decomposition, combustion and flame‐retardancy of epoxy resins—a review of the recent literature,” Polym. Int., vol. 53, no. 12, pp. 1901–1929, 2004
XVII. X. Huang, “Fabrication and properties of carbon fibers,” Materials (Basel)., vol. 2, no. 4, pp. 2369–2403, 2009.
XVIII. Y. Sheng Yin, B. Arezki, S. Yannick, and B. Radu, “Parameter Optimization of the Steam Thermolysis: A Process to Recover Carbon Fibers from Polymer-Matrix Composites,” Waste and Biomass Valorization, vol. 4, no. 1, pp. 73–86, 2013
I. Claudio Brunelli, ‘Design of Hardware Accelerators for Embedded Multimedia Applications’, 2009
II. Eduardo Jonathan Martínez Montes, Facultatd’Informàtica de Barcelona (FIB), “Design and implementation of a Multimedia Extension for a RISC Processor”,Master in Innovation and Research in Informatics (MIRI-HPC) ,2 July 2015.
III. GauravMitra, Beau Johnston, Alistair P. Rendell, and Eric McCreath, “Use of SIMD Vector Operations to Accelerate Application Code Performance on Low-Powered ARM and Intel Platforms”, 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum, 10.1109/IPDPSW.2013.207
IV. Mario Garrido, Member, Jesus Grajal and Oscar Gustafsson, “Optimum Circuits for Bit Reversal”, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART II: EXPRESS BRIEFS
V. Neil Burgess, “Assessment of Butterfly Network VLSI Shifter Circuit”, 978-1-4244-9721-8/10/ pp 92-96, Asilomar 2010 ©2010 IEEE
VI. Sabyasachi Das and Sunil P. Khatri, “A Timing-Driven Approach to Synthesize Fast Barrel Shifters”, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 55, NO. 1,Pgs. 31-36, JANUARY 2008
VII. SushmaWadar, D S Bormane, S C Patil, AvinashPatil, ‘A Novel Approach to Perform Shift/Rotate and Bit Permutation Operation’, ICNTET, GRT Institute of Engineering and Technology, Tirutanni, Chennai.
VIII. SushmaWadar, D S Bormane, S C Patil, AvinashPatil, ‘A Novel Approach to Perform Shift/Rotate and Bit Permutation Operation’, ICNTET, GRT Institute of Engineering and Technology, Tirutanni, Chennai.
IX. White Paper, ‘Developing Embedded Applications with ARM® CortexTM-M1Processors in Actel IGLOO and Fusion FPGAs’, March 2009
X. Woo-KyeongJeong and Yong-Surk Lee, “A Universal Shifter with Packed Data Formats”, International Journal for Electronics and Communications, (AE¨U) 57 (2003) No. 6, Pgs. 420−422
XI. YedidyaHilewitz, Member, IEEE, and Ruby B. Lee, ‘A New Basis for Shifters in General-Purpose Processors for Existing and Advanced Bit Manipulation’, IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009 pp 1036-1048
View | DownloadI. Avinash Patil1,DrShailaja Patil2,Dr D S Bormane3,Sushma Wadar4 “Novel Technique of Finding Square of Number to Reduce the Resources Utilized on Reconfigurable Hardware Logic”, 7th -8th Sept 2018 at GRT institute of Technology, Chennai, IEEE conference
II. Avinash Patil1, DrShailaja Patil2,Y V Chavan2 , Sushma Wadar3 “Division operation based on Vedic Mathematics”, 2nd -3rd Dec 2016 at RSCOE JSPMS, IEEE conference
III. Avinash Patil1, Y V Chavan2 , Sushma Wadar3 “Performance analysis of Multiplication operation based on Vedic mathematics” 21st ,22nd Oct 2016, Allahabad, IEEE conference
IV. C. M. Kim, “Multiplier design based on ancient indianvedic mathematics,” IEEE, vol. 11, pp. 3686–3689, 2008.
V. HimanshuThapliyal, SaurabhKotiyal and M. B Srinivas, “Design and Analysis of A Novel Parallel Square and Cube Architecture Based On Ancient Indian Vedic Mathematics”, Centre for VLSI and Embedded System Technologies, International Institute of Information Technology, Hyderabad, 500019, India, 2005 IEEE.
VI. Honey DurgaTiwari, GanzorigGankhuyag, Chan Mo Kim, Yong Beom Cho, “Multiplier design based on Ancient Vedic Mathematics”,978-1-4244-2599-0/08/$25.00 © 2008, IEEE.
VII. Jagadguru Swami Sri Bharati Krishna Tirthji Maharaja,“Vedic Mathematics”, MotilalBanarsidas, Varanasi, India, 1986, Book.
VIII. M. Ramalatha, K. Deena Dayalan, P. Dharani, S. Deborah Priya, “High Speed Energy Efficient ALU Design using Vedic Multiplication Techniques”, 978-1-4244-3834-1/09, 2009 IEEE.
IX. PrabirSaha, Arindam Banerjee, Partha Bhattacharyya, AnupDandapat “”High Speed ASIC Design of Complex Multiplier Using Vedic Mathematics” Proceeding of the 2011 IEEE Students’ Technology Symposium 14-16 January, 2011, lITKharagpur
X. Stuart F. Obermann and Michael J. Flynn, Division algorithms and implementations,” IEEE Transactions on Computers, 46(8):833–854, August 1997.
XI. Sudhanshu Mishra, MaoranjanPradhan,” Synthesis Comparison of KaratsubaMultiplierusing Polynomial Multiplication, Vedic Multiplier and Classical Multiplier”. International Journal of Computer Applications (0975 – 8887) Volume 41– No.9, March 2012
XII. T. Prabakar, “Design and fpga implementation of binary squarer using vedic mathematics,” IEEE, 2013.
I. A. Manikandan, V.J. Judith, L.J. Kennedy, and M. Bououdina, “Structural, optical and magnetic properties of Zn1-xCuxFe2O4 nanoparticles prepared by microwave combustion method,” Journal of Molecular Structure 1035, pp. 332–340, 2013.
II. B. Duong, S. Seraphin, P. Laokul, C. Masingboon, and S. Maensiri, “Ni–Cu–Zn ferrite prepared by aloe vera plant extract or egg white,” Microscopy and Microanalysis, 14, pp. 326–327, 2008.
III. I. D. Samadashvili, V. S. Varazashvili, T. E. Machaladze, and T. A. Pavlenishvili, “Thermodynamic functions of Cu1–xZnxFe2O4 ferrite solid solutions from 300 to 900 K,” Inorganic Materials 38, pp. 1186–1188, 2002.
IV. J. Darul, and W. Nowicki, “Preparation and neutron diffraction study of polycrystalline Cu–Zn–Fe materials,” Radiation Physics Chemistry. 78, pp. 109–111, 2009.
V. J. He, X.J. Tan, J.T. Xu, G.Q. Liu, H.Z. Shao, Y.J. Fu, et al. “Valence band engineering and thermoelectric performance optimization in SnTe by Mn alloying via a zone-melting method.” J Mater Chem A, 3:19974-9, 2015.
VI. K. Kato, H. Omoto, T. Tomioka, and A. Takamatsu, “Changes in electrical and structural properties of indium oxide thin films through post-deposition annealing,” Thin Solid Films, 520(1), pp. 110-116, 2011.
VII. M. Ajmal, and A. Maqsood, “Structural, electrical and magnetic properties of Cu1-xZnxFe2O4,” Journal of Alloy Compound, 460, pp. 54–59, 2008.
VIII. M. U. Rana, M. U. Islam, and T. Abbas, “Cation distribution and magnetic interactions in Zn-substituted CuFe2O4 ferrites,” Material Chemistry Physic, 65, pp. 345–349, 2000.
IX. M.W. Gaultois, T.D. Sparks, C.K.H. Borg, R. Seshadri, W.D. Bonificio, D.R. Clarke, “Data-driven review of thermoelectric materials: performance and resource considerations.” Chem Mater, 25:2911-20 2013.
X. S. A. Mazen, and A.M. El Taher, “The conduction mechanism of Cu–Si ferrite.” Journal of Alloys and Compounds, 498(1):19–25, 2010.
XI. S. Janpreet, S. Gurinder, K. Aman, S.K. Tripathi, “Effect of gradual ordering of Ge/Sb atoms on chemical bonding: A proposed mechanism for the formation of crystalline Ge2Sb2Te5.” Journal of Solid State Chemistry, 260:124-131, 2018.
XII. S. Roncallo, J. D. Painter, S. A. Ritchie, M. A. Cousins, M. V. Finnis, and K. D. Rogers, “Evaluation of different deposition conditions on thin films deposited by electrostatic spray deposition using a uniformity test,” Thin Solid Films, 518(17), pp. 4821-4827, 2010.
XIII. W. Yang, S. M. Rossnagel, and J. Joo, “The effects of impurity and temperature for transparent conducting oxide properties of Al:ZnO deposited by dc magnetron sputtering.” Vacuum, 86(10), pp. 1452-1457, 2012.
XIV. X. Gonze, B. Amadon, P. M. Anglade, J. M. Beuken, F. Bottin, and P. Boulanger, “ABINIT: first-principles approach to material and nanosystem properties,” Computer Physical Communication 180, pp. 2583-2615, 2009.
XV. X. Wang, K. Guo, I. Veremchuk, U. Burkhardt, X. Feng, J. Grin, et al. “Thermoelectric properties of Eu- and Na-substituted SnTe.” J Rare Earths, 33:1175-81, 2015.
XVI. Z. Yue, J. Zhou, X. Wang, Z. Gui, and L. Li, “ Low-temperature sintered Mg–Zn–Cu ferrite prepared by auto-combustion of nitrate–citrate gel,” Journal Materials Science Letters, 20, pp. 1327–1329, 2001.
XVII. Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, and S. Hou, “Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering method,” Superlattices and Microstructures, 49(6), pp. 644-653, 2011.
I. Bennettม J., C. Elkan, B. Liu, P. Smyth, and D. Tikk, “Kdd cup and workshop 2007”,ACM SIGKDD Explorations Newsletter, vol. 9, no. 2, pp. 51–52, 2007
II. Billsus, D.and Pazzani,M. J., “User Modeling for Adaptive News Access. User Modeling and UserAdapted Interaction,” 10, pp. 147-180, 2000.
III. Buhalis, D., Law, R., “Progress in information technology and tourism management: 20 years on and 10 years after the internetthe state of etourism research,” Tourism Management 29(4), 609 – 623 (2008). DOI http://dx.doi.org/10.1016/j.tourman.2008.01.005. URL http://www.sciencedirect.com/science/article/pii/S0261517708000162
IV. Cantador, I. Bellogin, A. and Castells, P., “Ontology-Based Personalized and Context-Aware Recommendations of News Items,” In Proceedings of the 7th International Conference on Web Intelligence, pp. 562-565. IEEE. 2008
V. Gauch, S., Speretta, M., Chandramouli, A., and Micarelli, A., “User profiles for personalized information access,” The adaptive web, pp. 54-89. Springer,2007.
VI. J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive algorithms for collaborative filtering”,The Fourteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., pp. 43–52,1998
VII. K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste: A constant time collaborative filtering algorithm,” information retrieval, vol. 4, no. 2, pp. 133–151, 2001
VIII. Kbaier M. E. B. H., Masri, H. ; KrichenS. ,“A Personalized Hybrid Tourism Recommender System”, 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), 2017
IX. Kim, H. R. and Chan, P. K., “Learning implicit user interest hierarchy for context in personalization,” In Proceedings of the 8th international conference on Intelligent user interfaces, pp. 101–108. ACM, 2003.
X. Liu, J. Dolan, P. and Pedersen, E. R., “Personalized news recommendation based on click behavior,” In Proceedings of the 15th international conference on intelligent user interfaces, pp. 31–40. ACM, 2010.
XI. Moreno, A., Sebastia´, L., Vansteenwegen, P., “Tours’15: Workshop on tourism recommender systems,” the 9th ACM Conference on Recommender Systems, RecSys’15, pp. 355–356. ACM, New York, NY, USA ,2015
XII. Moreno, A., Sebastia´, L., Vansteenwegen, P.: Tours’15: Workshop on tourism recommender systems. In: Proceedings of the 9th ACM Conference on Recommender Systems, RecSys’15, pp. 355–356. ACM, New York, NY, USA (2015). DOI 10.1145/2792838. 2798713. URL http://doi.acm.org/10.1145/2792838.2798713.
XIII. Ricci, F., “Travel recommender systems, “ IEEE Intelligent Systems”, 17(6), 55–57, 2002
XIV. Ricci, F., Werthner, H., “Case base querying for travel planning recommendation,” Information Technology & Tourism 4(3-4), 215–226 ,2001
XV. Singh, S., Shepherd, M., Duffy, J. and Watters, C., “An Adaptive User Profile for Filtering News Based on a User Interest Hierarchy,” In Proceedings of the American Society for Information Science and Technology, Volume 43, Issue 1, pp. 1-21, 2006.
I. Ahmad, Mahzan Ayob. (2005). Kaedah PenyelidikanSosioekonomi. EdisiKetiga. Dewan Bahasadan Pustaka. Kuala Lumpur.
II. Amy Emyra Ramli, Mohmadisa Hashim, Nasir Nayan& Mohammad Suhaily Yusri Che Ngah. (2012). Perbez aansuhuka was anbandardanluarbandar di telukintan, perak. DlmMohmadisaHashim, Mohammad SuhailyYusriCheNgah&NasirNayan (pnyt). Perubahan Persekitaran: Pelbagai Perspektif Dan Masalahnya. Hlm 23-35. University pendidikan sultan idris. Tanjongmalim.
III. Balogun, A. L. Bolagun, A. A., &Adeyea, D. Z., (2012). Observed heat island characteristic in akure, Nigeria. African journal of environment science and technology vol. 6(1). Hlm 1-8.
IV. Beltrami, H., &Kellman, L. (2003). An Examination of Short‐ and Long‐Term Air‐Ground Temperature Coupling. Global Planet Change, 98, 167–184.
V. Chow TseonLoong& Winston. (2004). The Temporal Dynamics of the Urban Heat Island of Singapore. Singapura. University KebangsaanSingapura. Thesis tidakditerbitkan.
VI. Hulme, M. (2004). A change in the weather? Coming to learnt with climate changes. Dlm Harris, F. (2004). Global environmental. Wiley. England. Majlis Perandaran Kota bharu Bandar Raya Isam (MPKB-BRI). (2008). DrafRancangan Tempatan Jajahan Kota Bharu 2020. Kota Bharu, Kelantan.
VII. Mohd Hairy Ibrahim, Muhammad RidhwanZulkifli, MohamadIhsanMohamad Ismail, NorKalsumMohd Isa &Mazlini Adnan. (2016). KesanPembandaranTerhadapTaburansuhu di Malaysia: kajiankes di rawang, Selangor. Department of Geography and Environment, Faculty of Human Sciences, UniversityPendidikan Sultan Idris, 35900 TanjongMalim,Perak, Malaysia. GEOGRAFIA OnlineTM Malaysian Journal of Society and Space 12 issue 5 (83 – 93) 2016, ISSN 2180 2491.
VIII. Morris, C., Simmonds, l, Plummer, N., (2001). Quantifcation of The Influences Of Wind And Cloud On The Nocturnal Urban Heat Island Of The Large City. J. Appl. Meteorol. 40 (2), 169-182.
IX. Mukhopadhyay, R., Karisiddaiah, S, M., &Mukhopadhyay, J. (2018). Climate Change: Alternate Governance Policy for South Asia. United States: Elsevier.
X. Nicholls, R. J., P. P. Wong, V. R. Burkett, J. O. Codignotto, J. E. Hay, R. F. McLean, S. Ragoonaden and C. D. Woodroffe, 2007: Coastal systems and low-lying areas. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M. L. Parry, O. F. Canziani, J. P. Palutik of, P. J. van der Linden and C. E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 315-356.
XI. Oke, T. R. (1987). Urban Heat Storage Derive as Energy Balance residuals. Boundary layer Meteorology. Vol. 39: 233-245.
XII. Owen, A. L., Conover, E., Viederas, J., & Wu, S. (2012). Heat Waves, Droughts, and Preferences for Environmental Policy. Journal of Policy Analysis and Management, 31(3), 556-577.
XIII. Rosmini Maru & Shaharuddin Ahmad. (2011). Perkemangan Pulau Haba Bandar Di Bandaraya Jakarta, Indonesia. Kertas Kerja Yang Dibentangkan Di Peridangan KebangsaanGeografi Dan Alam Sekitar Kali Ke-3. Tanjung Malim: UniversityPendidikan Sultan Idris. (10)February 2011).
XIV. Roth, M., and Chow, W.T.L., (2012). A Historical Review and Assessment of Urban Heat Island Research in Singapore. Singapore Journal of Tropical Geography, 33, 381-397.
XV. Shaharuddin, A., Noorazuan, M. H., Noraziah Ali, and Takeuchi, W. (2013). Seasonal Urban Heat Islands and Human Comfortability in Humid Tropical Areas. Geografi, 1(1), 132-145.
XVI. Sham Sani. (1995). IklimMikro: Proses danAplikasi. Bab 6. DewanBahasadanPustaka. Kuala Lumpur.
XVII. ShimaTaslim, Parapari, D. M., and Shafaghat, A. (2015). Urban Design Guidelines to Mitigate Urban Heat Island (UHI) Effects In Hot-Dry Cities. Technology Journal, 74(4), 119-124.
XVIII. Streulker, D. R. (2003). A Study of the Urban Heat Island of Houston, Texus. Ph.D Thesis. Rice University.
XIX. Yow, D. M. (2007). Urban Heat Islands: Observations, Impacts, and Adaptation. Geography Compass, 1(6). 1227-1251.
I. A.A. Minea, “A Review on Electrical Conductivity of Nanoparticle-Enhanced Fluids”, Nanomaterials, 9, 1592, 2019
II. A. Ali, F. Iqbal, K. Marwat, S.D.N. Asghar, M. Awais, “Soret and Dufour effects between two rectangular plane walls with heat source/sink”, Heat Transfer—Asian Res, 49: 614– 625, 2020
III. A. Jamaludin, K. Naganthran, R. Nazar, I. Pop, “Thermal Radiation and MHD Effects in the Mixed Convection Flow of Fe3O4–Water Ferrofluid towards a Nonlinearly Moving Surface”, Processes, 8(1):95, 2020
IV. A. Jedi, N. Razali, W.M.F.W Mahmood, N.A.A, Bakar, “Statistical Criteria of Nanofluid Flows over a Stretching Sheet with the Effects of Magnetic Field and Viscous Dissipation”, Symmetry, 11, 1367, 2019
V. Hashim, A. Hamid, M. Khan, “Heat and mass transport phenomena of nanoparticles on time-dependent flow of Williamson fluid towards heated surface”, Neural Comput & Applic,” 2019
VI. I. Waini, A. Ishak, I. Pop, “MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge”, I. Appl. Math. Mech.-Engl. Ed. (2020)
VII. K. Zaimi, A. Ishak, I. Pop, “Boundary layer flow and heat transfer over a nonlinearly permeable stretching/shrinking sheet in a nanofluid”, Scientific Reports 4, 4404, 1-8, 2014
VIII. M. G. Sobamowo, “Combined Effects of Thermal Radiation and Nanoparticles on Free Convection Flow and Heat Transfer of Casson Fluid over a Vertical Plate”, International Journal of Chemical Engineering, Article ID 7305973, 2018
IX. Mahabaleshwar, Nagaraju, Kumar, Nadagouda, Bennacer, Sheremet, “Effects of Dufour and Soret mechanisms on MHD mixed convective-radiative non Newtonian liquid flow and heat transfer over a porous sheet”, Thermal Science and Engineering Progress, Volume 16, 2020
X. Mahabaleshwar, Nagaraju, Vinaykumar, Nadagoud, Bennacer, Baleanu, “An MHD viscous liquid stagnation point flow and heat transfer with thermal radiation and transpiration”, Thermal Science and Engineering Progress, Volume 16, 100379, 2020
XI. N.A.M Noor, S. Shafie, M.A. Admon, “Unsteady MHD Flow of Cassonnano Fluid with Chemical Reaction, Thermal Radiation and Heat Generation/Absorption”, MATEMATIKA: MJIAM, Special Issue, 33–52, 2019
XII. N.H.A. Rahman , N. Bachok , H. Rosali, “MHD Stagnation-point Flow over a Stretching/ Shrinking Sheet in Nanofluids”, Universal Journal of Mechanical Engineering 7.4, 183 – 191, 2019
XIII. S. Abdal, B. Ali, S. Younas, L. Ali, A. Mariam, “Thermo-Diffusion and Multislip Effects on MHD Mixed Convection Unsteady Flow of Micropolar Nanofluid over a Shrinking/Stretching Sheet with Radiation in the Presence of Heat Source”, Symmetry, 12(1):49, 2020
XIV. S. Devi, S. Mekala, “Role of Brownian Motion and Thermophoresis Effects on Hydromagnetic Flow of Nanofluid Over a Nonlinearly Stretching Sheet with Slip Effects and Solar Radiation”, International Journal of Applied Mechanics and Engineering, 24(3), 489-508, 2019.
XV. S. Tsang, C. Sun, “Utilizing the inverse Marangoni convection to facilitate extremely-low-flow-rate intermittent spray cooling for large-area systems”, Applied Thermal Engineering, Volume 166,114725, 2020
XVI. S.U.S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles”, Proceeding of the 1995 ASME International Mechanical Engineering Congress and Exposition, ASME, FED 231/MD, New York 231(66), 99-105, 1995
XVII. Sabir, R. Akhtar, Zhu Zhiyu, et al., “A Computational Analysis of Two-Phase CassonNanofluid Passing a Stretching Sheet Using Chemical Reactions and Gyrotactic Microorganisms”, Mathematical Problems in Engineering, Article ID 1490571, 2019
XVIII. X. He, K. Zhang, C. Cai, “Stability Analysis on Nonequilibrium Supersonic Boundary Layer Flow with Velocity-Slip Boundary Conditions”, Fluids 4, 142, 2019
I. Bondarenko V.M., Bondarenko S.V. Engineering methods of the nonlinear theory of reinforced concrete. Moscow, stroiizdat, 1982, 288 p.
II. Danielsson H, Gustafsson PJ (2013) A three dimensional plasticity model for perpendicular to grain cohesive fracture in wood. EngFractMech 98. pp. 137–152.
III. Danielsson H., Gustafsson P.J., A probabilistic fracture mechanics method and strength (2011). pp. 407-419.
IV. Danielsson, H., Gustafsson, P. Fracture analysis of perpendicular to grain loaded dowel-type connections using a 3D cohesive zone model. Wood Material Science and Engineering Volume 11, Part 5, 2016, pp. 261-273.
V. G. Valentin, L. Boström, P.J. Gustafsson, A. Ranta-Mannus and S. Gowda, Application of Fracture Mechanics to Timber Structures: RILEM state-of-the-art report. VTT, ESPOO (1991).
VI. Gappoev M.M. Evaluation of the bearing capacity of wooden structures by the methods of fracture mechanics. Dis … Dr. Tech. Science. – Moscow, 1996. 256p.
VII. Gustafsson, P.J., Danielsson, H. Perpendicular to grain stiffness of timber cross sections as affected by growth ring pattern, size and shape. European Journal of Wood and Wood Products. Volume 71, Issue 1, January 2013. pp. 111–119.
VIII. Hlaskova L, Orlowski KA, Kopecky´ Z, Jedinák M. Sawing processes as a way of determining fracture toughness and shear yield stresses of wood. BioRes 2015;10(3):5381–94.
IX. Jockwer R, Steiger R, Frangi A. State-of-the-art review on approaches for the design of timber beams with notches. J StructEng 2013; 140(3): 04013068-1–04013068-13.
X. Jockwer, R., Serrano, E., Gustafsson, P.-J., Steiger, R. Impact of knots on the fracture propagating along grain in timber beams. International Wood Products Journal 8 (1), 2017, pp. 39-44.
XI. Karpenko N.I. General models of reinforced concrete mechanics. M., stroiizdat, 1996, 416 p
XII. L. Boström, Method for Determination of the Softening Behavior of wood and the Applicability of a Nonlinear Fracture Mechanics Model, Doctoral thesis, Report TVBM-1012, Lund, Sweden, 1992.
XIII. Larsson, G., Gustafsson, P.J., Crocetti, R. Use of a resilient bond line to increase strength of long adhesive lap joints. European Journal of Wood and Wood Products, 2018, pp. 401-411.
XIV. Larsson, G., Gustafsson, P.J., Serrano, E., Crocetti, R. Bond line models of glued wood-to-steel plate joints. Engineering Structures, Volume 121. 2016, pp. 160-169.
XV. M. F. S. F. de Moura, M. A. L. Silva, J. J. L. Morais, N. Dourado. Mode II fracture characterization of wood using the Four-Point End-Notched Flexure (4ENF) test.Theoretical and Applied Fracture Mechanics, Volume 98, December 2018, Pages 23-29
XVI. Masalov A. Fracture resistance of bent glued wooden elements: Author’s abstract. dis … cand. tech. Sciences: 05.23.01 / Ing.-builds. in-t. – Voronezh, 1992. – 21 p.
XVII. NaychukA.Ya. Strength of elements of wooden structures in conditions of a complex inhomogeneous stress state. Moscow, 2006, p.
XVIII. Okolnikova G.E. Analysis of the work of nagelnyh joints of wooden structures from the standpoint of fracture mechanics // Makeyevka: “Bulletin of DonNACEA”. 2011- 4 (90). – pp. 40-46.
XIX. Okolnikova G.E. Calculation of nagel compounds modified with pressed fiberglass bushings. – Moscow: MGOU, “Bulletin of MGOU”, No. 1 (3), 2009, pp. 28 – 33.
XX. Okolnikova G.E. Investigation of the relationship between the fracture toughness of wood and the calculated resistance of wood to stretching along the fibers. Bulletin of MGOU. – Moscow: MGOU, No. 2, 2010, p. 23-26.
XXI. Orlovich R.B. Long-lasting strength and deformability of structures from modern wood materials under the main operational influences: Abstract. dis. … Dr. techn. sciences. (05.23.01) / Leningr. Ing.-p., In-t. – L., 1991. – 51 p.
XXII. Pop O., Dubois F. Determination of timber material fracture parameters using mark tracking method. Construction and Building Materials, Volume 102, Part 2, 15 January 2016, pp. 977-984.
XXIII. R. Crocetti, P. J. Gustafsson, U. A. Girhammar, L. Costa, A. Asimakidis. Nailed Steel Plate Connections: Strength and Ductile Failure Modes. Structures, Volume 8, Part 1, November 2016, Pages 44-52.
XXIV. Ranta-Maunus, A. Fonselius, M., Kurkela, J., Toratti, T. Reliability analysis of timber structures. VTT Tiedotteita – ValtionTeknillinen Tutkimuskeskus.2001. pp
XXV. Shilang X.U., H.W. Reinhardt, M. Gappoev. Mode II fracture testing method for highly orthotropic materials like wood. International Journal of Fracture 75. September 1996, Volume 75, Issue 3, pp. 185–214.
XXVI. Sterley, M., Gustafsson, P.J. Shear fracture characterization of green-glued polyurethane wood adhesive bonds at various moisture and gluing conditions. Wood Material Science and Engineering. Volume 46, Issue 3, 2012. pp. 421-434.
XXVII. Tuturin SV, Shemyakin EI, Korotkina M.R. Destruction of wood during compression. // Bulletin of the Moscow State Forest University. – Мoscow: 2005.-№3 (39). – From 56-71.
XXVIII. ZaitsevYu.V., Okolnikova G.E., Dorkin V.V. Fracture mechanics for builders: textbook.-2 nd ed., Rev. and additional. Moscow: INFRA-M, 2016. -216p.
I. A. Hassanieh, H. R. Valipour, M. A. Bradford. Experimental and analytical behaviour of steel-timber composite connections. Construction and Building Materials, Volume 118, 15 August 2016, Pages 63-75
II. Danielsson, H., Gustafsson, P. Fracture analysis of perpendicular to grain loaded dowel-type connections using a 3D cohesive zone model. Wood Material Science and Engineering Volume 11, Part 5, 2016, pp. 261-273.
III. E-M.MeghlataM.OudjenebH.Ait-AideraJ-L.Batozc. A new approach to model nailed and screwed timber joints using the finite element method. Construction and Building Materials, Volume 41, April 2013, Pages 263-269
IV. Gianni Schiro, Ivan Giongo, Wendel Sebastian, Daniele Riccadonna, Maurizio Piazza. Testing of timber-to-timber screw-connections in hybrid configurations. Construction and Building Materials, Volume 171, 20 May 2018, Pages 170-186.
V. Hans Joachim Blaß, Patrick Schädle. Ductility aspects of reinforced and non-reinforced timber joints. Engineering Structures, Volume 33, Issue 11, November 2011, Pages 3018-3026.
VI. Jockwer, R., Serrano, E., Gustafsson, P.-J., Steiger, R. Impact of knots on the fracture propagating along grain in timber beams. International Wood Products Journal 8 (1), 2017, pp. 39-44.
VII. Larsson, G., Gustafsson, P.J., Crocetti, R. Use of a resilient bond line to increase strength of long adhesive lap joints. European Journal of Wood and Wood Products, 2018, pp. 401-411.
VIII. Larsson, G., Gustafsson, P.J., Serrano, E., Crocetti, R. Bond line models of glued wood-to-steel plate joints. Engineering Structures, Volume 121, 2016, pp. 160-169.
IX. MatteoBarbari, Alberto Cavalli, Lorenzo Fiorineschi, Massimo Monti, Marco Togni. Innovative connection in wooden trusses.Construction and Building Materials, Volume 66, 15 September 2014, Pages 654-663
X. NatalinoGattesco, Ingrid Boem. Stress distribution among sheathing-to-frame nails of timber shear walls related to different base connections: Experimental tests and numerical modelling. Construction and Building Materials, Volume 122, 30 September 2016, Pages 149-162
XI. Okolnikova G.E. Analysis of the work of nagelnyh joints of wooden structures from the standpoint of fracture mechanics // Makeyevka: “Bulletin of DonNACEA”. 2011- 4 (90). – pp. 40-46.
XII. Okolnikova G.E. Calculation of nagel compounds modified with pressed fiberglass bushings. – Moscow: MGOU, “Bulletin of MGOU”, No. 1 (3), 2009, pp. 28 – 33.
XIII. Okolnikova G.E. Investigation of the relationship between the fracture toughness of wood and the calculated resistance of wood to stretching along the fibers. Bulletin of MGOU. – Moscow: MGOU, No. 2, 2010, p. 23-26.
XIV. PrimožJelušič, StojanKravanja. Flexural analysis of laminated solid wood beams with different shear connections. Construction and Building Materials Volume 174, 20 June 2018, Pages 456-465.
XV. R. Wang, S.Q. Wei, Z. Li, Y. Xiao. Performance of connection system used in lightweight glubam shear wall. Construction and Building Materials, Volume 206, 2019, Pages 419-431.
XVI. Recommendations for the testing of joints of timber structures / TSNIISK them. V.A. Kucherenko. – Moscow: Stroiizdat, 1980. – 40p.
XVII. SP 64.13330.2011. Timber structures. Updated version of SNiP II-25-80 (with Amendment No. 1). Moscow: Ministry of Regional Development of Russia, 2011. – 92p.
XVIII. Themelina Paraskeva, Nischal P. N. Pradhan, Charikleia D. Stoura, Elias G. Dimitrakopoulos. Monotonic loading testing and characterization of new multi-full-culm bamboo to steel connections. Construction and Building Materials, Volume 201, 20 March 2019, Pages 473-483
XIX. Ulf Arne Girhammara, Nicolas Jacquierb, Bo Källsnerc. Stiffness model for inclined screws in shear-tension mode in timber-to-timber joints. Engineering Structures, Volume 136, 1 April 2017, Pages 580-595.
XX. Ursula Mahlknechta, Reinhard Brandnerb. Block shear failure mechanism of axially-loaded groups of screws. Engineering Structures, Volume 183, 15 March 2019, Pages 220-242.