National Conference on Recent Trends & Challenges in Engineering
Rajive Gandhi Memorial College, AP, India
National Conference on Recent Trends & Challenges in Engineering
Rajive Gandhi Memorial College, AP, India
I. A. Albakkar, O. P. Malik, “Adaptive Neuro-Fuzzy Controller Based on
Simplified ANFIS Network”, IEEE 978-1-4673-2729-9/12/$31.00, 2012.
II. A. Tepljakov, E. Petlenkov, I. Petras, “Design of a MATLAB-based
Teaching Tool in Introductory Fractional-Order Systems and Controls”, IEEE
978-1-5090-5920-1/17/$31.00, 2017.
III. B. Lin, P. Han, D.Wang, Q. Guo, “Control of Boiler-Turbine Unit Based on
Adaptive Neuro-Fuzzy Inference System”, IEEE 0-7803-7952-7/03/$17.00,
pp: 2821 – 2826, 2003.
IV. G. P. R. Reddy, M. V. Kumar, “ANFIS Based SVPWM Technique for HBridge
Multilevel Matrix Converter in Wind Energy Conversion System
Employing DFIG”, International Journal of Control Theory and Applications,
Vol.: 10, Issue: 16, pp:105 – 113, 2017.
V. H. Afghoul, F. Krim, A. Beddar, M. Houabes, “Switched fractional order
controller for grid connected wind energy conversion system”, The 5th
International Conference on Electrical Engineering – Boumerdes (ICEE-B)
October 29-31, Boumerdes, Algeria, 2017.
VI. H. Arpacıa, Ö F. Özgüven, “ANFIS & FOPID controller design and
comparison for overhead cranes”, Indian Journal of Engineering & Materials
Sciences Vol. 18, pp. 191-203, 2011.
VII. J. G. Sreeram, V. Gowtham, “Implementation of Fractional Order PID
Controller for An AVR System Using GAOptimization Technique”,
International Journal for Research in Applied Science & Engineering
Technology (IJRASET), Vol.: 5, Issue: V, pp: 1588 -1594, 2017.
VIII. L. Wang, D. N. Truong, “Stability Enhancement of a Power System With a
PMSG-Based and a DFIG-Based Offshore Wind Farm Using a SVC With an
Adaptive-Network-Based Fuzzy Inference System”, IEEE Transactions on
Industrial Electronics, Vol. 60, Issue: 7, 2013.
IX. L. Wang, M. S. N. Thi, “Stability Enhancement of a PMSG-Based Offshore
Wind Farm Fed to a Multi-Machine System through an LCC-HVDC Link”,
IEEE Transactions on Power Systems, Vol. 28, Issue: 3, 2013.
X. M. Al-Dhaifallah , N. Kanagaraj, K. S. Nisar, “Fuzzy Fractional-Order PID
Controller for Fractional Model of Pneumatic Pressure System”, Hindawi
Mathematical Problems in Engineering Volume, Article ID 5478781, 2018.
XI. M. El-Sayed, M. Essa, M. A. S. Aboelela, M. A. M. Hassan, “A Comparative
Study between Ordinary and Fractional Order PID Controllers for
Modelingand Control of an Industrial system Based on Genetic Algorithm”,
6th International Conference on Modern Circuits and Systems Technologies
(MOCAST), IEEE 978-1-5090-4386-6/17/$31.00, 2017.
XII. R. Bhavani, N. R. Prabha, C. Kanmani, “Fuzzy Controlled UPQC for Power
Quality Enhancement in a DFIG based Grid Connected Wind Power
System”, International Conference on Circuit, Power and Computing
Technologies. IEEE 978-1-4799-7075-9/15/$31.00, 2015.
XIII. R. Melício, J. P. S. Catalão, V. M. F. Mendes, “Fractional-Order Control and
Simulation of Wind Turbines with Full-Power Converters”, IEEE 978-1-
4244-5794-6/10/$26.00, 2010.
XIV. S. S. Sathri, M. Manohara, “Power quality improvement in grid connected
wind energy conversion systems by using custom power device”,
International Research Journal of Engineering and Technology (IRJET), Vol.:
04, Issue: 06, pp: 3254 – 3259, 2017.
I. A. Sikorski, M. Korzeniewski, A. Ruszczyk, M. P. Kazmierkowski, P.
Antoniewicz, W. Kolomyjski, M. Jasinski, “A Comparison of Properties of
Direct Torque and Flux Control Methods (DTC-SVM, DTC-δ, DTC-2×2, DTFC-
3A)”, International Conference on “Computer as a Tool” – EUROCON, pp.
1733-1739, 2007.
II. A. Tripathi, A. M. Khambadkone, S. K. Panda, “Torque ripple analysis and
dynamic performance of a space vector modulation based control method for
AC-drives,” IEEE Trans. Power Electron., Vol.: 20, Issue: 2, pp. 485–492, 2005.
III. B. Naresh, K. V. Kumar, Y. Narri, “DTC of induction motor with advanced
SVM strategies” IEEE Region 10 Conference (TENCON-2017), pp. 1737-1742,
2017.
IV. C. Lascu, I. Boldea, F. Blaabjerg, “A Modified Direct Torque Control for
Induction Motor Sensorless Drive” IEEE Trans. on Industry Applications, Vol.
36, Issue: 1, pp. 122-130, 2000.
V. D. Casadei, F. Pmfumo, G. Serra, A. Tani, “FOC and DTC: two viable schemes
for iuduction motors torque control,” IEEE Trans. Power Elect., Vol.: 17, Issue:
5, pp. 779-787, 2002.
VI. D. Soumitra, C. B. Arathil, G. Narayanan, “Analytical evaluation of harmonic
distortion factor corresponding to generalized bus-clamping pulse widt
modulation” IET Trans. Power Electron., Vol.: 7, Issue: 12, pp.3072-3082,
2014.
VII. D. Stando, M. P. Kazmierkowski,”Novel speed sensorless DTC-SVM scheme
for induction motor drives,”International Conference on Compatibility and
Power Electronics (CPE), pp.225-230, 2013.
VIII. D. Zhao, R. Ayyanar, “Space Vector PWM with DC link Voltage Control and
using Sequences with Active State Division,” Ind. Electron., in Proc. IEEE Int.
Symp., Vol. 2, pp. 1223–1228, 2006.
IX. E. Ozkop, H. I. Okumus, “Direct Torque Control of Induction Motor using space
vector modulation (SVM-DTC)”, Power System Conj., MEPCON, pp. 368-372,
2008.
X. F. Mak, R. Sundaram, V. Santhaseelan, S. Tandle, “Laboratory setup for Real-
Tme study of Electyric Drives with integrated interfaces for Test and
Measurement”, 38th ASEE/IEEE Frontier in Eductaion Conference, NY,
pp.T3H-1 to T3H-6, 2008.
XI. G. Adamidis, Z. Koustsogiannis, P. Vagdatis, “Investigation of the Performance
of a variable-speed Drive using Direct Torque control with Space Vector
Modulation” Tylor & Francis Trans. on Electric Power Components and
Systems, Vol.: 39, pp. 1227-1243, 2011.
XII. G. Narayanan, D. Zhao, H. K. Krishnamurthy, R. Ayyanar, V. T. Ranganathan,
“Space vector based hybrid PWM techniques for reduced current ripple,” IEEE
Trans. Ind. Electron., Vol.: 55, Issue: 4, pp. 1614–1627, 2008.
XIII. G. Narayanan, H. K. Krishnamurthy, Di Zhao, R. Ayyanar “Advance busclamping
PWM techniques based on space vector approach,” IEEE Trans. Power
Electron., Vol.: 21, Issue: 4, pp. 974–984, 2006.
XIV. G. S. Buja, M. P. Kazmierkowski, “Direct torque control of PWM inverter-fed
AC motors – a survey,” IEEE Trans. Ind. Appl., Vol.51, pp.744-757, 2004.
XV. I. Takahashi, T. Noguchi, “A new quick-response and high- efficiency control
strategy of an induction motor,” IEEE Trans. Ind. Appl., Vol. 22, Issue: 5, pp.
820-827,1986.
XVI. J. K. Kang, S. K. Sul, “New direct torque control of induction motor for
minimum torque ripple and constant switching frequency”, IEEE Trans. Ind.
Appl., Vol.35, Issue: 5, pp.1076–1082, 1999.
XVII. K. K. Shyu, J. K. Lin, V.T. Pham, M. J. Yang, T. W. Wang, “Global minimum
torque ripple design for direct torque control of induction motor drives,” IEEE
Trans. Ind. Electron., Vol. 57, Issue: 9, pp. 3148–3156, 2010.
XVIII. K. P. M. Sheif, J. Peter, R. Ramachand, “Spaced Vector based hybrid PWM for
VSI fed varaible speed induction motor drives” IEEE Annual India Conference
(INDICON), pp. 1-6, 2016.
XIX. M. Wang, J. Yang, C. Zhu, “Hybrid SVPWM technique for reduced torque
ripple in permanent magnet synchronous motor,” International Power Electronics
and Application Conference and Exposition, pp. 1297-1302, 2014
XX. N. Rumzi, N. Idris, C. L. Toh, M. E. Elbuluk, “A new torque and flux controller
for direct torque control of induction motor”, IEEE Trans. on Industry
Applications, Vol. 42, Issue: 6, pp. 1358-1366, 2006.
XXI. T. G. Habetler, F. Profumo, M. Pastorelli, L. M. Tolbert, “Direct Torque Control
of Induction Machines Using Space Vector Modulation,” IEEE Trans. on
Industry Applications, Vol. 28, Issue: 5, pp. 1045-1053, 1992.
I. C. W. Swonger, “Sample set condensation for a condensed nearest neighbor
decision rule for pattern recognition”, Front.Pattern Recognition, pp. 511–
519, 1972
II. F. J. S. Sanchez, “Prototype selection for nearest neighbor rule through
proximity graphs”, Pattern Recognition Lett., vol. 18(6), pp. 507–513, 1995.
III. G. Gates, “The reduced nearest neighbor rule”, IEEE Trans. Information
Theory, vol. vol IT-14, no. 3, pp. 431–33, 1972.
IV. I. Tomek, “Two modifications of cnn”, IEEE Trans. Syst.Man. Cybern., vol.
vol.SMC-6 no 11, pp. 769–772, 1972.
V. Keogh, Eamonn, A. Mueen “Curse of dimensionality”, Encyclopedia of
Machine Learning. Springer US, 257-258, 2011.
VI. K. R. Raja, P. Viswanath, C. S. Bindu,“A Cascaded Method to Reduce
theComputational Burden of Nearest Neighbor Classifier”, In Proceedings of
the First InternationalConference on Computational Intelligence and
Informatics, Springer, pp. 275-288, 2016.
VII. K. R. Raja, P. Viswanath, C. S. Bindu, “An Approach to Reduce the
Computational Burden of Nearest Neighbor Classifier”,Procedia Computer
Science Vol.:85, pp. 588-597, 2016.
VIII. K. R. Raja, P. Viswanath, C. S. Bindu, “A New Prototype Selection Method
for Nearest Neighbor Classificatio””, IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, Vol.: 15, Issue: 3, pp: 338 – 345, 2007.
IX. K. R. Raja, P. Viswanath, C. S. Bindu, “Nearest Neighbor Classifiers:
Reducing the Computational Demands”, In Advanced Computing (IACC),
2016 IEEE 6th International Conference, pp. 45-50, 2016.
X. P. Hart, “The condensed nearest neighbor rule”, IEEE Trans. on Information
Theory, Vol.: IT-14, Issue: 3, pp. 515–516, 1968.
XI. P. Murphy, D. W. Aha, UCI repository of machine learning databases–a
machine readable repository, 1995.
XII. P. Viswanath, N. Murty, S. Bhatnagar, “Overlap pattern synthesis with an
efficientnearestneighbor classifier”, Pattern recognition, Vol. 38, Issue: 8,
pp. 1187–1195, 2005.
XIII. P. Viswanath, T. H. Sarma, “An improvement to k-nearest neighbor
classifier”,Recent Advances in Intelligent Computational Systems (RAICS),
IEEE, pp. 227–231, 2011.
XIV. R. O. Duda, P. E. Hart, D. G. Stork, Pattern classification. 2nd. Edition. New
York, 2002.
XV. V. S. Babu, P. Viswanath, “Weighted k-nearest leader classifier for large
data sets”, Pattern Recognition and Machine Intelligence, pp. 17– 24, 2007.
XVI. V. S. Devi, M. N. Murty, “An incremental prototype set building technique”,
Pattern Recognition, Vol.: 35, Issue: 2, 505-513, 2002.
I. A. Ketabi, M. Farshadnia, M. Malekpour, R. Feuillet, “A New Control Strategy
for Active Power Line Conditioner (APLC) using adaptive notch filter”,
Electrical Power and Energy Systems, Vol.47, pp.31-40, 2013.
II. B. Singh, A. Chandra, K. Al-Haddad, Power Quality-Problems and Mitigation
Techniques, Chapter 9, pp.405,New York, USA: Wiley, 2015.
III. C. K. Duffey, R. P. Stratford, “Update of harmonic standard IEEE-519: IEEE
recommended practices, requirements for harmonic control in electric power
systems,” IEEE Trans. on Indus. App., Vol. 25, pp.1025–1034, 1989.
IV. K. Al-Haddad, A. Hamadi, S. Rahmani, N. Mendalek, “A new control technique
for three-phase shunt hybrid power filter”, IEEE Trans Ind Electron.
V. K. S. Rani, K. Porkumaran, “Performance evaluation of PI and fuzzy controller
based Shunt active power filter”, Eur J Sci Res, Vol.: 61, Issue: 3, ISSN 1450–
216X, 2011.
VI. L. Moran, D. Rivas, J. R. Espinoza, J. W. Dixon, “Improving passive filter
compensation performance with active techniques. IEEE Trans Ind Electron,
Vol.: 50, Issue: 1, pp.161–170, 2003
VII. M. Badoni, A. Singh, B. Singh, “Comparitive Performance of Wiener Filter and
Adaptive Least Mean Square Based control for power Quality improvement”,
IEEE transaction on Industrial Electronics, Vol.: 63, Issue: 5, pp:3028-3037,
2016.
VIII. M. Qasim, P. Kanjiya, V. Khadkikar, “Optimal Current Harmonic Extractor
Based on Unified ADALINEs for ShuntActive Power Filters”, IEEE Trans. on
Power Elec., Vol.29, Issue: 12, pp. 6383-6393, 2014.
IX. P. Chittora, A. Singh, M. Singh, “Gauss– Newton-based fast and simple
recursive algorithm for compensation using shunt active power filter”, IET
Generation, Transmission & Distribution , Vol.: 11, Issue: 6, pp-1521-1530,
May 2017
X. P. Garanayak, G. Panda, P. K. Ray, “Harmonic estimation using RLS algorithm
and elimination with improved current control technique based SAPF in a
distribution network”, Electrical Power and Energy Systems, Vol.73, pp.209-
217, 2015.
XI. Q. N. Trinh, H. H. Lee, “An advanced current control strategy for three-phase
shunt active power filters”, IEEE Trans Ind Electron, Vol.: 60, Issue: 12, pp:
5400–5410, 2013.
XII. S. Mikkili, A. K. Panda, “Instantaneous active and reactive power and current
strategies for current harmonics cancellation in 3-ph 4-Wire SHAF with both PI
and fuzzy controllers”, Energy Power Eng, Vol.: 3, pp: 285–298, 2011.
XIII. S. Shukla, S. Mishra, B. Singh, S. Kumar ,“Implementation of empirical mode
Decomposition Based Algorithm for Shunt Active Filter”, IEEE Transactions on
Industry Applications, Vol.: 53 Issue: 3, pp:2392-2400, 2017.
XIV. W. C. Lee, “Cost-effective APF/UPS system with seamless mode transfer”, J.
Electr. Eng. Technol., Vol.: 10, Issue: 1, pp. 195–204, 2015.
XV. Y. G. Jung, “Graphical representation of the instantaneous compensation power
flow for single-phase active power filters”, J Electr Eng Technol, Vol.: 8 Issue:
6, pp. 1380– 1388, 2013.
I. Asha, “Job Satisfaction among woman in relation to their family
environment”, Journal of community Guidance and Research, Vol. II, Issue:
1, pp.43 -50, 1994.
II. A. Sharma, M. Khanna “ Job satisfaction among bank employees- A study
on district hamirpur (H. P) published in International Journal of science,
Environment. Vol-3, No.4, pp. 1582-1591, 2014.
III. B. A. Jenaibi, “Job satisfaction – It’s the little things that count”,
Management Science and Engineering, Vol. 4, Issue: 3, pp. 60-79, 2010.
IV. C. B. Gupta, “Human Resource Management- published by Sultan Chand &
Sons.
V. Chakraborty, Parul, “Job satisfaction”, Industrial relations, Vol. 17, Issue: 3,
1965.
VI. C. K. Basu, “Incentives and Job Satisfaction”, Indian Journal of Industrial
Relations, Vol. 1, Issue: 3, 1966.
VII. E. A. Lock, “Job Satisfaction and Job Performance: A Theoretical Analysis
Organizational Behavior and Human Performance”, Vol.: 5, pp.23 – 27,
1970.
VIII. F. W. Taylor, “Organizational Behavior”, Mumbai: Sultan and Chand
Publications, p 114.
IX. J. M. Shah, M. Rehman, A. Gulnaz, H. Zafar, “Job Satisfaction and
Motivation of Teachers of Public Educational Institutions”, International
Journal Business and Social Sciences, Vol.3 Issue. 8, 2012.
X. J. Uli, B. Parasuraman, M. M. Abdullah, “Job satisfaction among secondary
school teachers”, Journal Kemanusiaan bil.13, 2009.
XI. K. Aswathappa, Human Resource and Personnel Management.
XII. L. W. Porter, E. E. Lawler. “The Effect of Performance on Job Satisfaction”,
Indian Journal of Industrial Relations, Vol. 7, pp. 20-28, 1989.
XIII. M. E. Malik, Job Satisfaction and Organizational Commitment of
University, International Journal of Business and Management Vol. 5, Issue:
6, pp. 17, 2010.
XIV. M. N. Kabir, M. M. Parvin, “Factors Affecting Employee Job Satisfaction of
Pharmaceutical Sector”, Australian Journal of Business and Management
Research, Vol. 1, Issue: 9, pp. 113-123, 2011.
XV. M. Hariharamahadevan, S. D. Amirtharajan, “Job Satisfaction of
Nationalised Bank Officers Summary of a Study”, Indian Journal of Training
and Development, Vol.: XXVII, Issue: 2, pp.97, 1997.
XVI. N. S. Hafiza, S. S. Shah, H. Jamsheed, K. Zaman, “Relationship between
rewards and employees Motivation in the non-profit organizations of
Pakistan”, Business Intelligence Journal, Vol.4, Issue: 2, pp. 327-334, 2011.
XVII. N. Muhammad, M. Akhter, “Supervision, Salary and Opportunities for
Promotion as Related to Job Satisfaction.
XVIII. N. N. Vrinda, A. Nisha, N. N. Jacob, “The Impact on job satisfaction on job
performance”, published in International Journal in commerce, IT & social
sciences, Vol.: 2, Issue: 2, pp. 27-37, 2015.
XIX. R. I. Khan, H. D. Aslam, I. Lodhi, “ Compensation Management: A strategic
conduit towards achieving employee retention and Job Satisfaction in
Banking Sector of Pakistan”, International Journal of Human Resource
Studies, Vol. 1, Issue: 1, pp. 2162-3058, 2011.
XX. R. Fischer, “Rewarding employee loyalty: An organizational justice
approach”, International Journal of Organizational Behavior, Vol. 8, Issue: 3,
pp. 486-503, 2004.
XXI. R.H. Pock, A. Kinicki, “Organizational Behavior” Key concepts, Skills &
practices”, Boston: McGraw – Hill Irwin. 2003
XXII. R. Sailaja, C. Naik, “Job Satisfaction Among Employees of Select Public
and Private Banks in Rayalaseema Region”, A.P. International Journal of
Research in Management, Vol.2 Issue. 6, 2016.
XXIII. S. P. Robbins, “Management of Organization Behavior”, Pragathi
Publication, 1990.
XXIV. Singa and Agarwal, Supervisory Behavior and Job Satisfaction,
XXV. V. Sinha, C. K. Agarwal, “Personnel Management”, Mumbai: Sultan and
Chand Publications, p 114, 2003.
I. A. Alsaadi, B. Gholami, “An effecctive approach for distribution system
power flow solution”, Intern. Journ. of Electr. and Electron. Eng., 2009 .
II. A. M. Imran, M. Kowsalya, “Optimal size and siting of multiple distribution
generators in distribution system using bacterial foraging optimization”,
Swarm and Evolut. Comput., Vol.: 15, pp. 58-65, 2014.
III. C. V. Suresh, M. S. Giridhar, “Analysing the effect of distributed generators
on economical and technical aspects of distributed systems”.
IV. J. Kennedy, R. C. Eberhart, “Particle swarm optimization”, Proceedings of
the IEEE International Conference on Neural Networks IV, Piscataway, NJ:
IEEE Service Center, pp. 1942-1948, 1995.
V. J. Federico, V. Gonzalez, C. Lyra, “Learning classifiers shape reactive power
to decrease losses in power distribution networks,” Proc. IEEE Power Eng.
Soc. General Meet., Vol.: 1, pp. 557–562, 2005.
VI. L. d. S. Coelho, V. C. Mariani, “Particle Swarm Optimization with Quasi-
Newton Local Search for Solving Economic Dispatch Problem”, IEEEInternational Conference on Systems, Man, and Cybernetics, Taipei, Taiwan,
2006.
VII. M. N. Moradi, M. Abedini, “A combination of genetic algorithm and particle
swarm optimization for optimal DG location and sizing in distribution
systems”, Elsevier, Science Direct, Electr. Power Energy Syst., pp. 66-74,
2012.
VIII. M. Z. A. C. Wanik, A. Mohamed, “Intelligent management of distributed
generators for loss minimization and voltage control ”,15th Intenational
(MELCON), pp. 685-690, 2010.
IX. N. Acharya, P. Mahat, N. Mithulananthan, “An analytical approach for
distributed generation allocation in distribution network ”, Electr. Power
and Energy Systems, pp. 669-678, 2006.
X. P. S. Georgilakis, , N. D. Hatziargyriou, “Optimal distributed generation
placement on power distribution networks: models, methods, and future
research’ , IEEE Trans. Power Syst, Vol.: 28, Issue: 3, pp. 3420-3428.,2013
XI. R. C. Eberhart, J. Kennedy, “A new optimizer using particles swarm theory”,
Proceedings of the 6th In-ternational Symposium on Micro Machine and
Human Science, Vol.: 4, Issue: 6, pp. 39-43, 1995.
XII. R. Jabr, B. Pal, “Ordinal optimisation approach for locating and sizing
distributed generation”, IET Gener, transm. Distrib., 2009, Vol.: 3, Issue: 8,
pp. 713-723
XIII. R. K. Singh, S. K. Gowsami, “Optimum allocation of distributed generations
based on nodal pricing for profit, loss reduction, and voltage improvement
including voltage rise issue”, Elsevier, Science Direct, Electr. Power Energy
Syst., Vol.: 32, pp. 637–644, 2010.
XIV. S. K. Injeti, N. P. Kumar, “A Novel Approach to Identify Optimal Access
Point and Capacity of Multiple DGs in a Small, Medium and Large Scale
Radial Distribution Systems”, Elsevier, Science Direct, Electr. Power Energy
Syst., pp. 142-151, 2013.
XV. S. K. Injeti, V. K. Thunuguntla, M. Shareef, “Optimal allocation of capacitor
banks in radial distribution systems for minimization of real power loss and
maximization of network savings using bio-inspired optimization
algorithms”, Electrical Power and Energy Systems, Vol.: 69, pp. 441–455,
2015.
XVI. Y. A. Katsigiannis, P. S. Georgilakis, “Effect of customer worth of
interrupted supply on the optimal design of small isolated power systems
with increased renewable energy penetration’. IET Gener. Transm. Disturb.,
7, (3), pp.,265-275, 2013.
I. A. Ruha, S. Sallinen, S. Nissila, “A real-time microprocessor QRS detector
system with a 1ms timing accuracy for measurement of ambulatory HRV”,
IEEE Trans.Biomed.Eng., pp,159-167,1997.
II. C. C. Lin, C. M. Yang, “Heartbeat classification using normalized intervals
and morphological features”, Mathematical Problems in Engineering, 2014.
III. C. Ye, B. Kumar, M. Coimbra, “An automatic subject-adaptable heartbeat
classifier based on multi-view learning,” IEEE J. Biomed. Health
Informatics, Vol. 20, Issue. 6, 2016.
IV. C. Ye, B.V.K. Vijaya Kumar, M.T. Coimbra, “Heartbeat classifi-cation
using morphological and dynamic features of ECG signals,” IEEE Trans.
Biomed. Eng., Vol. 59, Issue. 10, pp.2930-2941, 2012.
V. E. Alickovic, A. Subasi, “Medical decision support system for diagnosis of
heart arrhythmia using DWT and random forests classifier”, J. Medical
Systems, Vol. 40, Issue. 4, pp. 1-12, 2016.
VI. F. Melgani, Y. Bazi, “Classification of electrocardiogram signals with
support vector machines and particle swarm optimization,” IEEE Trans.
Inform. Technol. Biomedicine, Vol. 12, Issue. 5, pp. 667-677, 2008.
VII. G. B. Moody, “A noise stress test for arrhythmia detectors”,
Comput.Cardiol., Vol. 11, pp. 381–384, 1984.
VIII. G. B. Moody, R. G. Mark, “The impact of the MIT-BIH arrhyth-mia
database, IEEE Eng. Med. Biol. Mag., Vol.: 20, Issue: 3, pp. 45–50, 2001
IX. J. Kim, S. D. Min, M. Lee, “An arrhythmia classification algorithm using a
dedicated wavelet adapted to different subjects,” Biomed. Eng. Online, Vol.
10, Issue. 1, 2011.
X. K. V. Surez, J. C. Silva, Y. Berthoumieu, P. Gomis, M. Najim, “ECG beat
detection using a geometrical matching approach,” IEEE Trans. Biomed.
Eng., Vol. 54, Issue. 4, pp. 641-650, 2007.
XI. M. Elgendi, “Fast QRS detection with an optimized knowledgebased
method: evaluation on 11 standard ECG databases,” PLoS One, Vol.: 8,
article e73557, 2013.
XII. M. K. Das, S. Ari, “Patient-specific ECG beat classification tech-nique,”
Healthcare Technol. Lett., Vol.: 1, Issue: 3, 2014.
XIII. M. Milanesi, N. Martini, N. Vanello, L. Landini, “Independent component
analysis applied to the removal of motionartefacts from electrocardiographic
signals,” Med. Biol. Eng. Comput., Vol. 46, pp. 251–261, 2008.
XIV. P. d. Chazal, M. O. Dwyer, R. B. Reilly, “Automatic classification of
heartbeats using ECG morphology and heartbeat interval features,” IEEE
Trans. Biomed. Eng., Vol.: 51, Issue: 7, pp. 1196-1206, 2004.
XV. P. d. Chazal, R. B. Reilly, “A patient-adapting heartbeat classifier using
ECG morphology and heartbeat interval feature,” IEEE Trans. Biomed.
Eng., Vol.: 53, pp. 2535-2543, 2006.
XVI. P. Ghorbanian, A. Ghaffari, A. Jalali, C. Nataraj, “Heart arrhythmia
detection using continuous wavelet transform and principal component
analysis with neural network classifier,” Computing Cardiol, pp. 669-672,
2010.
XVII. Q. Li, C. Rajagopalan, G. D. Clifford, “Ventricular fibrillation and
tachycardia classification using a machine learning approach,” IEEE Trans.
Biomed. Eng., Vol.: 61, Issue: 6, pp. 1607-1613, 2014.
XVIII. S. Banerjee, M. Mitra, “Application of cross wavelet transform for ecg
pattern analysis and classification,” IEEE Trans. Instrum. Meas., Vol. 63,
Issue. 2, pp. 326-333, 2014.
XIX. S. Kiranyaz, T. Ince, M. Gabbouj, “Real-Time patient-specific ECG
classification by 1-D convolutional neural networks,” IEEE Trans. Biomed.
Eng., Vol. 63, Issue. 3, pp. 664-675, 2016.
XX. S. Mitra, M. Mitra, B. B. Chaudhuri, “A rough-set-based inference engine
for ECG S. Graja, J. M. Boucher, “Hidden Markov tree model applied to
ECG delineation,” IEEE Trans. Instrum. Meas., Vol. 54, Issue. 6, pp. 2163-
2168, 2005.
XXI. T. H. Linh, S. Osowski, M. Stodolski, “On-line heart beat recogni-tion using
Hermite polynomials and neuro-fuzzy network,” IEEE Trans. Instrum.
Meas., Vol. 52, Issue. 4, pp. 1224-1231, 2003.
XXII. T. Ince, S. Kiranyaz, M. Gabbouj, “A generic and robust system for
automated patient-specific classification of ECG signals,” IEEE Trans.
Biomed. Eng., Vol. 56, pp. 1415-1426, 2009.
XXIII. T. Mar, S. Zaunseder, J. P. Martnez, M. Llamedo, R. Poll, “Optimiza-tion of
ECG classification by means of feature selection,” IEEE Trans. Biomed.
Eng., Vol.: 58, Issue: 8, pp. 2168-2177, 2011
XXIV. V. Phalguna Kumar, G. Amjad Khan “ QRS Detection Algorithm for
Electrocardiogram Signal ” IJAERD, Vol.: 4, Issue 8, pp. 2348-6406, 2017
XXV. W. Jiang, S. G. Kong, “Block-based neural networks for personal-ized ECG
signal classification,” IEEE Trans. Neural Net., Vol. 18, Issue. 6, pp. 1750-
1761, Nov. 2007.
I. A. Giustiniani, G. Petrone, G. Spagnuolo, M. Vitelli, “Low
current oscillations and maximum power point tracking in grid
fuel-cell-based systems”, IEEE Trans Indus Electron., Vol.: 57, Issue: 6, pp.
2042-2053, 2010.
II. B. Geng, J. K. Mills, D
optimization for a fuel cell/battery plug
multi-objective particle swarm optimization”, Inter J. Automot Techn.,
Vol.:15, Issue: 4, pp.645
III. F. Sobrino-Manzanares, A. Garri
multi-phase and multi
applications”, Int J of Hydrogen Enery., Vol.: 40, Issue: 36, pp. 12447
2015.
No.-5, January (2020) pp
107
three-phase andmaximum voltage gain IBC is used for Fuel
controller is designed for
D. Sun, “Combined power management/design
plug-in hybrid electric vehicle using
645-654, 2014.
Garrigós, “An interleaved, FPGA
multi-switch synchronous boost converter for fuel cell
95-108
ler performance
Low-frequency
grid-connected
. gós, FPGA-controlled,
12447-56,
IV. H. Hemi, J. Ghouili, A. Cheriti, “A real time fuzzy logic power management
strategy for a fuel cell vehicle”, Energy Convers. Manag., Vol.: 80, pp. 63-
70, 2014.
V. H. J. Chiu, L.W. Lin, “A bidirectional DC–DC converter for fuel cell electric
vehicle driving system”, IEEE Trans Power Electron., Vol.21(4), pp.950-
958, 2006.
VI. J. P. Ram, N. Rajasekar, M. Miyatake, “Design and overview of maximum
power point tracking techniques in wind and solar photovoltaic systems”,
Renew Sustain Energy Rev., Vol. 73, pp. 1138-1159, 2017.
VII. K. J. Reddy, N. Sudhakar, “High voltage gain interleaved boost converter
with neural network based MPPT controller for fuel cell based electric
vehicle applications”, IEEE Access, Vol.: 6, 2018:3899e908.
VIII. K. Kumar, N. R. Babu, K. R. Prabhu, “Design and Analysis of RBFN-Based
Single MPPT Controller for Hybrid Solar and Wind Energy System”, IEEE
Access., Vol. 5, pp.15308-15317, 2017.
IX. M. Buragohain, C. Mahanta, “ANFIS Modeling of Nonlinear Systems based
on Subtractive Clustering and V-fold Technique”, Proceedings of IEEE
Annual India Conference, New Delhi, 2006.
X. M. Buragohain, C. Mahanta, “ Full Factorial Design based ANFIS Model for
Complex Systems”, Proceedings of IEEE Annual India Conference, New
Delhi, 2006.
XI. N. Mebarki, T. Rekioua, Z. Mokrani, D. Rekioua, S.Bacha, “PEM fuel
cell/battery storage system supplying electric vehicle”, Int. J. of Hydrogen
Enery., Vol.: 41, Issue: 45, pp.20993-21005, 2016.
XII. S. Abdi, K. Afshar, N. Bigdeli, S. Ahmadi, “A novel approach for robust
maximum power point tracking of PEM fuel cell generator using sliding
mode control approach”, Int. Jou. Elec. Sci., pp. 4192-4209, 2012.
XIII. S. Saravanan, N. R. Babu, “Maximum power point tracking algorithms for
photovoltaic system–A review”, Renew Sustain Energy Rev., Vol.: 57, pp.
192-204, 2016.
XIV. T. Esram, P. L. Chapman, “Comparison of photovoltaic array maximum
power point tracking techniques”, IEEE Trans Energy Conver., Vol.: 22,
Issue: 2, pp.439-49, 2007.
XV. V. Bist, B. Singh, “Reduced sensor configuration of brushless DC motor
drive using a power factor correction-based modified-zeta converter”, IET
Power Electron., Vol.: 7, Issue: 9, pp. 2322-2335, 2014.
I. A. K. Jain, R. C. Dubes, “Algorithms for Clustering Data”, Prentice Hall,
Engle-wood Clis NJ, U.S.A., 1988.
II. A. W. H. Debar, M. Dacier, “Towards a taxonomy of intrusion-detection
systems”, Computer Networks, Vol.: 31, pp.805–822, 1999.
III. C.C. Chang, C.J. L. Libsvm, “A library for support vector machines”,
Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm, 2001.
IV. C. Cortes, V. Vapnik, “Support-vector network”, Machine Learning, Vol.: 20,
pp. 273–297, 1995.
V. C. J. C. Burges, “A tutorial on support vector machines for pattern
recognition”, Data Mining and Knowledge Discovery, Vol.: 2, Issue: 1, pp.
47, 1998.
VI. G. B. E. Boser, V. Vapnik, “A training algorithm for optimal margin classifiers”,
Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, ACM Press, pp. 144–152, 1992.
VII. I. Graf, R. P. Lippman, D. J. Fried, M. A. Zissman, “Evaluating intrusion
detection systems: The 1998 darpa online intrusion detection evaluation”, In
Proceedings of DARPA Information Survivability Conf. and Exosition
(DISCEX’00), pp. 12–26, 2000.
VIII. J. Han, M. Kamber, “Data Mining: Concepts and Techniques”, Aca-demic
Press, 2001.
IX. Lincoln Laboratory MIT. DARPA Intrusion Detection Data Sets.
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.h
tml.
X. L. Kaufman, P. Rousseeuw, “Finding groups in data: An introduction to
cluster analysis”, John Wiley & Sons, New York, 1990.
XI. P. Cunningham, “Ensemble techniques”, Technical Report UCD-CSI-2007-5,
2007.
XII. R. O. Duda, P. E. Hart, D. G. Stork, “Pattern Classification”, A Wileyinterscience
Publication, John Wiley & Sons, 2nd edition, 2000.
XIII. S. Bhatnagar, P. Viswanath, M. Murty, “Partition based pattern synthesis
technique with ecient algorithms for nearest neighbor classification”, Pattern
Recognition Letters, Vol.: 27, pp.1714–1724, 2006.
XIV. S. J. Stolfo, W. Lee, “A data mining framework for building intrusion
detection mod-els”, Proceedings of the IEEE Symposium on Security and
Privacy, 1999.
XV. V. N. Vapnik, “An overview of statistical learning theory”, IEEE Transactions
on Neural Networks, Vol.: 10, Issue: 5, 1999.
XVI. W. L. M. Tavallaee, E. Bagheri, A. A. Ghorbani, “A deatiled analysis of the
kdd cup 99 data set”, In Proceedings of IEEE Symposium on Computer
Intelligence in Security and Defense Applications(CISDA), 2009.
XVII. Y. Freund, R. E. Schapire, “Experiments with a new boosting algorithm”, In
Proceedings 13th International Conference on Machine Learning, San
Francisco, pp. 148–146, 1996.
I. A. Kao, S. R. Poteet. “Natural language processing and text mining”,
Springer, 2007.
II. A. K. Uysal, S. Gunal, “The impact of preprocessing ontext classification”,
Information Processing & Management, Vol.: 50, Issue: 1, 104–112, 2014.
III. A. M. Callum, K. Nigam, “A comparison of event modelsfor naive bayes
text classification”, In AAAI-98 workshop on learning for text
categorization, Vol.: 752, pp. 41–48, 1998.
IV. C. C. Aggarwal, C. X. Zhai, “Mining text data”, Springer, 2012.
V. D. M. Bikel, S. Miller, R. Schwartz, R. Weischedel, “Nymble: a highperformance
learning name-finder”, In Proceedings of the fifth conference
on Applied natural language processing. Association for Computational
Linguistics, pp. 194–201, 1997.
VI. G. R. Kumar, G. A. Ramachandra, K. Nagamani, “An Efficient Prediction of
Breast Cancer Data using Data Mining Techniques”, International Journal of
innovations in Engineering and Technology, Vol.: 2, Issue: 4, pp: 139-144,
2013.
VII. G. R. Kumar, K. Nagamani, “A Framework of Dimensionality Reduction
utilizing PCA for Neural Network Prediction”, Proceedings of the
International Conference on Data Science and Management(ICDSM-2019),
Published in the book series Lecture Notes on Data Engineering and
Communications Technologies of Springer Publishing House, 2019.
VIII. G. R. Kumar, K. Nagamani, “Banknote Authentication System utilizing
Deep Neural Network with PCA and LDA Machine Learning Techniques”,
International Journal of Recent Scientific Research, Vol.: 9,Issue:12(D),
2018.
IX. J. Lafferty, A. McCallum, F. C. N. Pereira, “Conditionalrandom fields:
Probabilistic models for segmenting and labeling sequence data”, 2001.
X. K. Alsabti, S. Ranka, V. Singh, “An efficient k-means clustering algorithm”,
1997.
XI. K. Nigam, A. McCallum, S. Thrun, T. Mitchell, “Learning to classify text
from labeled and unlabeled documents”, AAAI/IAAI 792, 1998.
XII. L. Breiman, J. Friedman, C. J. Stone, R. A. Olshen, “Classification and
regression trees”, CRC press, 1984.
XIII. M. Allahyari, K. Kochut, “Automatic topic labeling using ontology based
topic models”, In Machine Learning and Applications (ICMLA), IEEE 14th
International Conference on. IEEE, pp. 259–264, 2015.
XIV. M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B. Gutierrez,
K.Kochut, “Text Summarization Techniques: A Brief Survey”, ArXiv eprints,
arXiv:1707.02268, 2017.
XV. M. V. Lakshmaiah, G. R. Kumar, G. Pakardin, “Frame work for Finding
Association Rules in Bid Data by using Hadoop Map/Reduce Tool”,
International Journal of Advance and Innovative Research, Vol.: 2, Issue:
1(I), pp:6-9, 2015.
XVI. S. R. Basha, J. K. Rani, “A Comparative Approach of Dimensionality
Reduction Techniques in Text Classification”, Engineering, Technology &
Applied Science Research, Vol.: 9, Issue: 6, pp. 4974-4979, 2019.
XVII. S. R. Basha, J. K. Rani, J. J. C. P. Yadav, “A Novel Summarization-based
Approach for Feature Reduction Enhancing Text Classification Accuracy”,
Engineering, Technology & Applied Science Research, Vol.: 9, Issue: 6, pp.
5001-5005, 2019.
XVIII. S. R. Basha, J. K. Rani, J. J. C. P. Yadav, G. R. Kumar, “Impact of
featureselection techniques in Text Classification:An Experimental study”,
J. Mech. Cont.& Math. Sci., Issue: 3, pp 39-51, 2019.
XIX. T. Kalt, W. B. Croft, “A new probabilistic model of text classification and
retrieval”, Technical Report, Citeseer, 1996.
XX. U. M. Fayyad, G. P. Shapiro, P. Smyth, “Knowledge Discovery and Data
Mining: Towards a Unifying Framework”, In KDD, Vol.: 96, pp. 82–88,
1996.
I. A. David, J. Gutierrez, S. K. Ray, “Securing RPL routing protocol from
blackhole attacks using a trust-based mechanism”, Telecommunication
Networks and Applications Conference (ITNAC), 26th International. IEEE,
2016.
II. Aijaz, A. Aghvami, “Cognitive machine-to-machine communications for
internet-of-things: A protocol stack perspective,” IEEE Internet of Things
Journal, Vol.: 2, Issue: 2, pp. 103-112, 2015.
III. A. Shoukat, “Detection and prevention of Black Hole Attacks in IOT &
WSN”, Fog and Mobile Edge Computing (FMEC), Third International
Conference on. IEEE, 2018.
IV. C. Christian, “Detection of sinkhole attacks for supporting secure routing on
6LoWPAN for Internet of Things”, IM, 2015.
V. C. Perkins, E. B. Royer, S. Das, “Ad hoc On-Demand Distance Vector
(AODV) Routing,” IETF, RFC 3561, 2003.
VI. G. Ghada, A. Rachedi, A. Meddeb, “A secure routing protocol based on RPL
for Internet of Things”, Global Communications Conference
(GLOBECOM), IEEE, 2016.
VII. G. Jorge, E. Monteiro, J. S. Silva, “Security for the internet of things: a
survey of existing protocols and open research issues”, IEEE
Communications Surveys & Tutorials, Vol.: 17, Issue: 3, pp. 1294-1312,
2015.
VIII. J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, “Internet of things (IOT):
A vision, architectural elements, and future directions,” Future Generation
Computer Systems, 2013.
IX. K. Iuchi, “Secure parent node selection scheme in route construction to
exclude attacking nodes from RPL network”, IEICE Communications
Express, Vol.: 4, Issue: 11, pp. 340-345, 2015.
X. N. Kushalnagar, G. Montenegro, C. Schumacher, “IPv6 over low-power
wireless personal Area networks (6LoWPANs): Overview, assumptions,
problem statement, and goals,” RFC 4919, 2007.
XI. T. Clausen, A. C. D. Verdiere, J. Yi, A. Niktash, Y. Igarashi, U. Herberg,
“The Lightweight On-demand Ad hoc Distance-vector Routing Protocol –
Next Generation (LOADng),” IETF, Draft, 2012.
XII. T. Winter, P. Thubert, A. Brandt, “RPL: IPv6 routing protocol for lowpower
and lossynetworks”, RFC 6550, 2012.
XIII. W. Kevin, K. Pister, “Evaluating sinkhole defense techniques in RPL
networks”, Network Protocols (ICNP), 20th IEEE International Conference
on. IEEE, 2012.
XIV. W. Linus, S. Raza, T. Voigt, “Routing Attacks and Countermeasures in the
RPL-based Internet of Things”, International Journal of Distributed Sensor
Networks, Vol.: 9, Issue: 8, 2013.
I. A. A. Al-Azzawi, A. S. Ali, H. K. Risan, “Behavior Of Ultra High
Performance Concrete Structures”, ARPN Journal of Engineering and
Applied Sciences, Vol.: 6, Issue: 6, 2011
II. IS: 383, Specifications for Coarse and Fine Aggregates from Natural Sources
for Concrete. Bureau of Indian Standards, New Delhi. 1970
III. IS: 2386, Indian standard “code of practice for methods of test for aggregates
for concrete” Bureau of Indian standards, New Delhi. 1963
IV. K. S. Kumar, G. Acharya, S. R. K. Mhamai, “Reactive Powder Concrete
with mineral admixtures”, JETIR, Vol : 2, Issue : 6, 2015
V. M. Panjehpour, A. A. A. Ali, R. Demirboga, “A Review For
Characterization Of Silica Fume And Its Effects On Concrete Properties”,
International Journal of Sustainable Construction Engineering &
Technology, Vol 2, Issue 2, 2011.
VI. N. Roux, C. Andrade, M. A. Sanjuan, “Experimental Study of Durability of
Reactive powder Concretes”, ASCE Journal of Materials in Civil
Engineering, Vol: 8, Issue :1, 1996.
VII. P. Richard, M. Cheyrezy, “Composition of reactive powder concrete”,
Cement and Concrete Research, Vol: 25, Issue: 7, 1995.
VIII. S. Ali, “Mechanical Properties and Durability of Polymer Modified RPC
Exposed to Oil Products”, Ph.D. Thesis, University of Technology,
Baghdad, 2012.
IX. W. I. Khalil, “Some Properties of Modified Reactive Powder Concrete”,
Journal of Engineering and Development, Vol. 16, Issue: 4, 2012.
X. W. Kushartomo, I. Bali, B. Sulaiman, “Mechanical behavior of reactive
powder concrete with glass powder substitute”, 5th International Conference
of Euro Asia Civil Engineering Forum (EACEF-5), 2015.
XI. Y. W. Chan, S. H. Chu, “Effect of silica fume on steel fiber bond
characteristics in reactive powder concrete,” Cement and Concrete Research,
No- 34, 2004
I. A. Bleakleya, A. B. Jordana, M. Hennessya, K. Glanzb, A. Strasserc, S. Vaalaa,
“Do Emotional Appeals in Public Service Advertisements Influence
Adolescents’ Intention to Reduce Consumption of Sugar-Sweetened
Beverages?”, Journal of Health Communication: International Perspectives,
Vol.: 20, Issue: 8, 2015.
II. A. Burmaster, “Global faces and networked places”,
https://nielsen.com/nielsenwire/wpcontent/uploads/2009/03/nielsen_globalfaces
_mar09.pdf, 2009
III. A. M. Kaplan, M. Haenlein. “Users of the world, unite! The challenges and
opportunities of social media‖”, Business Horizons, Vol.: 53, pp. 59–68, 2010
IV. C. Riegner, “Word of mouth on the web: the impact of web 2.0 on consumer
purchase decisions‖”, Journal of Advertising Research, Vol.: 47, Issue: 4, pp.
437–447, 2007.
V. D. Barefoot, J. Szabo. “Friends with benefits: A social media-marketing
handbook”, San Francisco: No Starch Press, 2010.
VI. N. Hafele, “Social Media Marketing: Interaction”, Trends & Analytics‖, ICT
511 Fall, Vol.: 51, Issue: 3, pp. 1-6, 2011.
VII. P. R. Hill, N. Moran, “Social marketing meets interactive media: lesson for
advertising company”, International Journal of Advertising, Vol.: 30, Issue: 5,
pp. 815–838, 2011.
VIII. S. Hill, F. Provost, C. Volinsky, “Network-Based Marketing: Identify likely
adopters via consumer networks‖”, Journal of Statistical Science, Vol.: 21,
Issue: 2, pp .256-276, 2006.
IX. S. Paul, “What Exactly is Public Service Advertising”,
http://advertising.about.com/od/advertisingglossary/g/Public-Service-
Advertising-A-Complete-Definition-Of-Public-Service-Advertising.html, 2016.
X. V. K. Gadda, “Imapact of Social Advertising towards Health &Hygeine”,
International Journal Recent Technology and Engineering, Vol. 08, Issue: 3,
pp.7056-7061, 2019.
I. A. K. Dwivedi, D. K. Charyulu, “Efficiency of Indian Banking Industry in
the Post-Reform Era”,IIMA Working Papers, pp:1–15, 2009.
II. B. Georg, N. Vivekanand, “Can the cross-sectional variation in expected
stock returns explain momentum”, Journal of Financial and Quantitative
Analysis, Vol.:1, Issue:44, pp: 777-794, 2009.
III. C. F. Lee, W. K. Shih,“Fundamental and Technical and Combined
information for separating winners from losers”, Vol.:12, Issue:2, pp:1-44,
2009.
IV. D. Dhingra, “Fundamental Analysis of Public Sector Banks”, International
Journal of Management and Social Sciences Research,Vol.:2, Issue: 6,
pp:19-27, 2013.
V. D. V. Nishit, “Comparative Study of Selected Private Sector Banks in
India”, International Journal of Research in Commerce & Management,
Vol.:3, Issue:7, pp:161-166, 2012.
VI. E. Jaouida, “Fundamental analysis strategy and prediction of stock returns”,
International Journal of Finance and Economics, Vol.:4, Issue:30, pp:95-108,
2009.
VII. M. Malaya, R. Lenka, A. Pradhan, S. Kumar, “A Study of Operational
Efficiency of Commercial Banks in Indian Financial System: At a Glance”.
Abhinav Journal of Research in Commerce & Management, Vol.:4, Issue: 6,
pp:13-18, 2015.
VIII. P. H. Rao, D. Sudhendu, “Fundamental Analysis of Banking Sector in
India”, Indian Journal of Finance, Vol.:8, Issue: 9, pp:47-56, 2014.
IX. S. Malik, “Technological Innovations in Indian Banking Sector: Changed
face of Banking”, International Journal of Advance Research in Computer
Science and Management Studies Research, Vol.:2, Issue:6, pp:122-128,
2014.
X. S. Sana, “An Analysis of Indian Banking Industry with Special Reference to
ICICI Bank”, International Journal of Recent Research in Social Sciences
and Humanities. Vol.:1, Issue:1, pp:29-39, 2014.
XI. V. A. Avadhani, “Securities Analysis and Portfolio Management”, Mumbai,
Himalya Publishing House.
XII. V. Koundal, “Performance of the Indian Bank in the Indian Financial
System”, International Journal of Social Science & Interdisciplinary
Research, Vol.:1, Issue:9, pp:204-212. 2012.
XIII. W. Karan, “A Study on Fundamental Analysis on Banking Sector”, Asian
Journal of Research in Banking and Finance, Vol.:2, Issue:4, pp:7.-78, 2012.
XIV. Websites: http://www.businessdictionary.com/
XV. Websites: http://www.investopedia.com/university/fundamentalanalysis
XVI. Websites:
http://www.sebi.gov.in/cms/sebi_data/attachdocs/1291707519218.pdf
XVII. Websites:
https://web.iima.ac.in/assets/snippets/workingpaperpdf/5467612052011-03-
01.pdf
I. B. M. Wilamowski, H. Yu, “Improved Computation for Levenberg–
Marquardt Training” IEEE Transactions on neural network. Vol.: 21, Issue:
6, pp. 930-937, 2010.
II. K. Zeb, W. U. Din, M. A. Khan, A. Khan, U. Younas, T. D. C. Busarello, H.
J. Kim, “Dynamic. Simulations of Adaptive Design Approaches to Control
the Speed of an Induction Machine Considering Parameter Uncertainties and
External Perturbations.” Energies, vol.: 11, Issue: 9 pp. 2339, 2018.
III. L. A. Brooks, J. L. Castro, L. Castro, “Speed and position controllers using
indirect field-oriented control: a classical control approach.” IEEE Trans.
Ind. Electron, Vol. 61, Issue: 4, pp. 1928–1943, 2014.
IV. L. J. Phukon, N. Baruah, “A Generalized MATLAB Simulink Model of a
Three Phase Induction Motor”, International Journal of Innovative Research
in Science, Engineering and Technology, Vol.: 04, Issue: 05, 2015.
V. L. P. Ratnani, A. G. Thosar, “Mathematical Modelling of an 3 Phase
Induction Motor Using MATLAB/Simulink”, International Journal Of
Modern Engineering Research (IJMER), Vol.: 04, Issue: 06, 2014.
VI. P. C. Krause, C. H. Thomas, “Simulation of Symmetrical Induction
Machinery”, IEEE Transaction on Power Apparatus and Systems, Vol.: 84,
1965.
VII. S. D. Sudhoff, O. Wasynezuk, P. C. Krause, “Analysis of Electric machinery
and drive systems”, IEEE press, A John wiley& sons, Inc. publication
second edition, 2002.