Special Issue No. – 2, August, 2019

National Conference on Advancement in Engineering, Science & Technology

Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India

SYHTHESIS OF TITANIUM DIOXIDE NANOPARTICLES AND ITS VARIOUS PROPERTIES

Authors:

Shaik Shaheen,Undamatla L N M Venkata Surya Prakash,Abhishek Kumar,Mohammad Arif,S.Thirumavalavan,

DOI:

https://doi.org/10.26782/jmcms.spl.2019.08.00091

Abstract:

Sol gel technique is used in the preparation of titanium dioxide nanoparticles. 10ml of TTIP (Titanium tetra iso-propoxide) is mixed with 4.ml Isopropyl alcohol and further vaccinated at 450oC for 3 hours. Various techniques are employed to determine the crystalline phase, Fourier Transform Infrared Spectroscopy (FTIR) for the identification of functional group, Scanning Electron Micoscopy (SEM) for the partial size and surface morphology identification, Raman analysis to identify the polymorphism and local crystallinity. The other properties like optical properties of titanium dioxide nanoparticles are determined by Ultraviolet (UV) analysis. TGA (Thermo gravimetric analysis) to determine the thermal properties of titanium dioxide nanoparticles.

Keywords:

Titanium dioxide nanoparticles,Spectroscopy,Crystalline,

Refference:

I. Dalpian GM, Chelikowsky J R, Phys. Rev. “Self-Purification in
Semiconductor Nanocrystals”, Lett. 2006, 96, 226802..
II. Li G, Nogami M,“Preparation and optical properties of sol‐gel derived
ZnSe crystallites doped in glass films”,J. Appl. Phys., 1994,75,4276.
III. Quinlan FT, Kuther J, Tremel W, Knoll W, Risbud S, Stroeve P,
Reverse Micelle “Synthesis and Characterization of ZnSe
Nanoparticles”,Langmuir, 2000, 16,4049.
IV. S.Suresh, “Investigations on electrical properties of cadmium telluride
thin films by chemical bath deposition technique”,journal of Non-Oxide
Glasses. 6 (2014) 47 – 52
V. Wang WZ, Geng Y, Yan P, Liu FY, Xie Y, Qian YT, “Synthesis and
characterization of MSe (M=Zn, Cd) nanorods by a new solvothermal
method”,Inorg. Chem. Commun.1999, 2,83.
VI. Sarigiannis D, Peck JD, “Characterization of vapor-phase-grown ZnSe
nanoparticles”,Appl. Phys. Lett. 2002, 80,4024.
VII. P. Gadenne, Y. Yagil, G. Deutscher, “Transmittance and reflectance in
situ measurements of semicontinuous gold films during deposition”,J.
Appl. Phys. 66 (1989) 3019
VIII. E.H.Putley , “Materials used in Semiconductor Devices”, 2nd Ed., John
Wiley and sons Ltd. N.Y, (1967)
IX. S.S.Ballard, J.S.Browder , J.F. Ebersole , “American Institute of Physics
Handbook”, 3rd ed., D.E Gray McGraw-Hill Book Co. N.Y. (1972) p.59
X. P. K. Nair, O. Gomezdaza and M. T. S. Nair, “Metal sulphide thin film
photography with lead sulphide thin films”,Adv. Mater. Opt. Electr.,
1(1992)139

XI. H. Hirata and K. Higashiyama, “Analytical Study of the Lead Ionselective
Ceramic Membrane Electrode”,Chem. Soc. Jpn., 44(1971)
2420
XII. R. S. Kane, R. E. Cohen and R. Silbey,“Theoretical Study of the
Electronic Structure of PbS Nanoclusters”, J. Phys. Chem.,
100(1996)7928
XIII. H. Kanazawa and S. Adachi, “Optical properties of PbS”,J. Appl. Phys.,
83(1998) 5997-6001
XIV. R. K. Joshi, A. Kanjilal and H. K. Sehgal, “Solution grown PbS
nanoparticle films”,Appl. Surf. Sci., 221(2004) 43
XV. L. Shao, K.H. XChang and H.L.Hwang,“Zinc sulfide thin films deposited
by RF reactive sputtering for photovoltaic applications Appl.”, Surf.Sci.
212-213, 305-310(2003).
XVI. M.Icimura, F. Goto, Y. Ono and E.Arai, “Deposition of CdS and ZnS
from aqueous solutions by a new photochemical technique”,J. Cryst.
Growth.198-199, 308-312(1999).
XVII. R.Nomura,T. Murai, T.Toyosaki, and H.Matsuda, “Single-source
MOVPE growth of zinc sulfide thin films using zinc dithiocarbamate
complexes”,Thin Solid Films. 271 (1-2), 4-7(1995).
XVIII. P.Roy, J.R. Ota, and S.K. Srivastava, “Crystalline ZnS thin films by
chemical bath deposition method and its characterization”,Thin Solid
Films.515 (4), 1912-1917(2006).
XIX. M. S. Shinde, P. B. Ahirrao, R. S. Patil,“Structural, Optical and Electrical
Properties of NanocrystallineZnS thin films Deposited by Novel
Chemical Route”Archivesof Applied Science Research, 3 (2), 311-
317(2011)
XX. E. I. Schropp, M.Zeman, “Amorphous and Microcrystalline Silicon Solar
Cells: Modelling, Materials and Device Technology”, Kluwer Academic
Pub. Boston and London (1998)
XXI. H. Zhang, X. Ma, D. Yang, “Effects of complexing agent on CdS thin
films prepared by chemical bath deposition” Mate.Lett. 58 (2003) 5-9
XXII. K. S. Ramaiha, R. D. Pilkington, A. E. Hill, R. D. Tomlinson, A. K.
Bhatnagar, “Structural and optical investigations on CdS thin films
grown by chemical bath technique”,Mater. Chem. and Phys. 68 (2001)
22
XXIII. J. Lee, “Comparison of CdS films deposited by different techniques”,
Effects on CdTe solar cellAppl. Sur. Sci. 252 (2005) 1398

View | Download

Friction Stir Welding of Aluminum Alloys with Different Pin Profiles

Authors:

M. Sucharitha,B.Ravisankar,

DOI:

https://doi.org/10.26782/jmcms.spl.2019.08.00092

Abstract:

Frictions stir welding having the power to be used as various packages. But, It is very compulsory to conquer little demanding situations for its more-unfold utilization. Device physical appearance and choice of the methods parameters are vital troubles in the utilization of this method. Three specific device pin geometries (cylindrical threaded, Conical Threaded, MX-Trivex) and two distinctive manner changebles, i.e. rotational speeds and welding speeds had been decided on for the extended research. The welded specimens had been experimented for mechanical characteristics. It became located that rectangular pin profile gave better weld fine than the opposite profiles.

Keywords:

FSW,Aluminum Alloy,Tool pin profile,Mechanical properties,

Refference:

I. Bhadeshia.H and T. DebRoy: ‘Critical assessment: friction stir welding of
steels’, Sci. Technol. Weld. Joint. 2009, 14, (3), 193–196.
II. Dawes.C.J and W. M. Thomas: ‘Friction stir process welds aluminum alloys’,
Weld. J., 1996, 75, (3), 41–45.
III. Dawes.C.J, W.M. Thomas, Development of improved tool designs for
Friction Stir Welding of Aluminum, First International Conference on
Friction Stir Welding, June 1999.

IV. Feng AH, Xiao BL, Ma ZY. Grain boundary misorientation and texture
development in friction stir welded SiCp/Al-Cu-Mg composite. Mater Sci
Eng A 2008; 497: 515.
V. Fu.Z.H., D. Q. He, and Wang H, Friction stir welding of aluminium alloys,
Journal of Wuhan University of Technology- Materials Science Edition, Vol.
19, pp 61-64,2004.
VI. Ji, S.D.; Shi, Q.Y.; Zhang, L.G.; Zou, A.L.; Gao, S.S.; Zan, L.V. Numerical
simulation of material flow behavior of friction stir welding influenced by
rotational tool geometry. Comput. Mater. Sci. 2012, 63, 218–226.
VII. Nandan.R, T. DebRoy and H. K. D. H. Bhadeshia, Recent advances in
friction stir welding–process, weldment structure and properties, Progress in
Materials Science, vol.53, pp. 980-1023, 2008.
VIII. Nicholas.E.D and W. M. Thomas: ‘A review of friction processes for
aerospace applications’, Int. J. Mater. Prod. Technol., 1998, 13, (1–2), 45–55
IX. Pourahmad, P.; Abbasi, M. Materials flow and phase transformation in
friction stir welding of Al 6013/Mg. Trans. Nonferr. Met. Soc. China 2012,
23, 1253–1261.
X. Rodrigues DM, Loureiro A, Leitao C, Leal RM, Chaparro BM, Vilaca P.
Influence of friction stir welding parameters on the micro structural and
mechanical properties of AA 6016- T4 thin welds. Mater Des 2009; 30:1913-
21.
XI. Thomas.W.M, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith
and C. J. Dawes: ‘Friction stir butt welding’, US Patent 5460317, 1995.
XII. Thomas.W.M, P. L. Threadgill and E. D. Nicholas: ‘Feasibilityof friction stir
welding steel’, Sci. Technol. Weld. Join., 1999, 4, (6), 365–372.
XIII. Thomas.W.M: ‘Friction stir welding – recent developments’, Mater. Sci.
Forum, 2003, 426–432, 229–236.
XIV. Schmidt.H and J. Hattel, A local model for the thermo mechanical conditions
in friction stir welding, Model Simul Mater Sci Eng. 2005, 13, 77-93.

 

View | Download