REVOLUTIONIZING HEALTHCARE: AN IN-DEPTH ANALYSIS OF DEEP LEARNING MODELS

Authors:

Ankita Roy,Atul Garg,

DOI NO:

https://doi.org/10.26782/jmcms.spl.11/2024.05.00014

Keywords:

Deep Learning Predictive Models,Diseases,Lung Cancer,Pneumonia,Tuberculosis,

Abstract

The healthcare sector is characterized by a vast amount of information and holds significant potential for improvement through the integration of state-of-the-art technologies. Deep learning models have been regarded as being particularly ideal since they can efficiently handle and analyze enormous amounts of data, allowing them to attain the highest possible level of accuracy. This study aims to conduct a comprehensive analysis of various deep learning models by comparing their performance on different datasets. Additionally, it will focus on the practical application of the VGG-16 and AlexNet models specifically on the ChestX-ray14 dataset. The evaluation of the accuracy of numerous deep-learning models is conducted to assess the efficacy and performance of such models. Among the array of models available, the Genetic Deep Learning Convolutional Neural Network (GDCNN), DenseNet-201, and Convolutional Neural Network (CNN) have emerged as top contenders, showcasing superior performance and robustness. The GDCNN achieved an accuracy of 98.84 percent, and DenseNet-201 exhibited an accuracy of 97.2 percent. Notably, the CNN outperformed the other models with an accuracy of 99.39 percent. The incorporation of a larger dataset, the addition of more convolutional layers to the CNN, and image segmentation techniques may enhance the overall performance and accuracy levels.

Refference:

I. A. H. Alharbi, H.A. Hosni Mahmoud. : ‘Pneumonia Transfer Learning Deep Learning Modelfrom Segmented X-rays’. Healthcare. Vol. 10, (6), pp.987, MDPI.2022, May.
https://doi.org/10.3390/healthcare10060987.
II. A.M. Barhoom, S.S. Abu-Naser. : ‘Diagnosis of Pneumonia Using Deep Learning’. International Journal of Academic Engineering Research. (IJAER). Vol. 6(2) (2022).
https://philpapers.org/rec/BARDOP-3
III. A. Perianes-Rodriguez, L. Waltman, and N. J. Van Eck. : ‘Constructing bibliometric networks: A comparison between full and fractional counting’. Journal of Informetrics. Vol. 10(4), pp. 1178-1195 (2016). 10.1016/j.joi.2016.10.006
IV. A. Munappy, J. Bosch, H. H. Olsson, A. Arpteg, and B. Brinne. : ‘Data management challenges for deep learning’. 2019 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). IEEE. Pp. 140-147 (2019). 10.1109/SEAA.2019.00030
V. A. K. Minda and V. Ganesan. : ‘A Review on Optimal Deep Learning Based Prediction Model for Multi Disease Prediction’. Smart Technologies in Data Science and Communication: Proceedings of SMART-DSC 2022. pp. 81-90 (2023). 10.1007/978-981-19-6880-8_8
VI. A. I. Newaz, A. K. Sikder, M. A. Rahman, and A. S. Uluagac. : ‘A survey on security and privacy issues in modern healthcare systems: Attacks and defenses’. ACM Transactions on Computing for Healthcare. Vol. 2(3), pp. 1-44 (2021). 10.1145/3453176
VII. C. Bhatt, I. Kumar, V. Vijayakumar, K. U. Singh, and A. Kumar. : ‘The state of the art of deep learning models in medical science and their challenges’. Multimedia Systems. Vol. 27(4), pp. 599-613 (2021). 10.1007/s00530-020-00694-1
VIII. C. H. Koh, D. Z. Khan, R. Digpal, H. Layard Horsfall, A. Ali, S. E. Baldeweg, … and H. J. Marcus : ‘The clinical outcomes of imaging modalities for surgical management Cushing’s disease–A systematic review and meta-analysis’. Frontiers in Endocrinology. Vol. 13, 3591, 2023. 10.3389/fendo.2022.1090144
IX. Data source available from : https://nihcc.app.box.com/v/ChestXray-NIHCC
X. E. L. Schwarz, L. Pegolotti, M. R. Pfaller, and A. L. Marsden. : ‘Beyond CFD: Emerging methodologies for predictive simulation in cardiovascular health and disease’. Biophysics Reviews. Vol. 4(1), 011301, 2023. 10.1063/5.0109400
XI. F. Jing, Z. Li, S. Qiao, J. Zhang, B. Olatosi, and X. Li. : ‘Using geospatial social media data for infectious disease studies: a systematic review’. International Journal of Digital Earth. Vol. 16(1), pp. 130-157, 2023. 10.1080/17538947.2022.2161652
XII. H. Abbasimehr, and R. Paki. : ‘Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization’. Chaos, SolitonsFractals. Vol. 142, 110511, 2021. 10.1016%2Fj.chaos.2020.110511
XIII. H. Ali, I. K. Niazi, B. K. Russell, C. Crofts, S. Madanian, and D. White. : ‘Review of Time Domain Electronic Medical Record Taxonomies in the Application of Machine Learning’. Electronics. Vol. 12(3), 554, 2023. 10.3390/electronics12030554
XIV. J. Alshudukhi, S. Aljaloud, T.S. Alharbi and S. Abebaw. : ‘Convolutional Neural Network Architecturesto Solve a Problem of Tuberculosis Classification Using X-Ray Images of the Lungs’. Journal of Nanomaterials. 2509830, 2022. https://doi.org/10.1155/2022/2509830
XV. J. He, K. Chen, X. Pan, J. Zhai, and X. Lin. : ‘Advanced biosensing technologies for monitoring of agriculture pests and diseases: A review’. Journal of Semiconductors. Vol. 44(2), 023104, 2023. 10.1088/1674-4926/44/2/023104
XVI. L. Velasquez-Camacho, M. Otero, B. Basile, J. Pijuan and G. Corrado : ‘Current Trends and Perspectives on Predictive Models for Mildew Diseases in Vineyards’. Microorganisms. Vol. 11(1), pp. 73, 2023. 10.3390/microorganisms11010073
XVII. M. Moshawrab, M. Adda, A. Bouzouane, H. Ibrahim, and A. Raad : ‘Smart Wearables for the Detection of Cardiovascular Diseases: A Systematic Literature Review’. Sensors. Vol. 23(2), pp. 828, 2023. F10.3390/s23020828
XVIII. M. Nahiduzzaman, M.R. Islam, and R. Hassan. : ‘ChestX-Ray6: Prediction of multiple diseasesincluding COVID-19 from chest X-ray images using convolutional neural network’. Expert Systems with Applications, Vol. 211, 118576, 2023. https://doi.org/10.1016/j.eswa.2022.118576
XIX. M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. : ‘Xnor-net: Imagenet classification using binary convolutional neural networks’. European conference on computer vision. Springer, Cham. pp.525-542 2016. 10.48550/arXiv.1603.05279
XX. N. C. Hurley, E. S. Spatz, H. M. Krumholz, R. Jafari, and B. J. Mortazavi. : ‘A survey of challenges and opportunities in sensing and analytics for risk factors of cardiovascular disorders’. ACM transactions on computing for healthcare. Vol. 2(1), pp. 1-42, 2020. 10.1145/3417958
XXI. N. Kumar, R. K. Kaushal, S. N. Panda, and S. Bhardwaj. : ‘Impact of the Internet of Things and Clinical Decision Support System in Healthcare’. IoT and WSN based Smart Cities: A Machine Learning Perspective. Cham: Springer International Publishing. (pp. 15-26). (2022). 10.1007/978-3-030-84182-9_2
XXII. N. Kumar, M. Gupta, D. Gupta, and S. Tiwari. : ‘Novel deep transfer learning model for COVID-19 patient detection using X-ray chest images’. Journal of ambient intelligence and humanized computing. Vol. 14(1), pp. 469-478, 2023. 10.1007/s12652-021-03306-6
XXIII. N. Sheng, L. Huang, Y. Lu, H. Wang, L. Yang, L. Gao, and Y. Wang, : ‘Data resources and computational methods for lncRNA-disease association prediction’. Computers in Biology and Medicine. 106527, 2023. 10.1016/j.compbiomed.2022.106527
XXIV. P. K. Shukla, J. K. Sandhu, A. Ahirwar, D. Ghai, P. Maheshwary, and P. K. Shukla. : ‘Multiobjective genetic algorithm and convolutional neural network based COVID-19 identification in chest X-ray images’. Mathematical Problems in Engineering. pp. 1-9, 7804540, 2021. 10.1155/2021/7804540
XXV. P. Szepesi, and L. Szilágyi. : ‘Detection of pneumonia using convolutional neural networks and deeplearning’. Biocybernetics and Biomedical Engineering. Vol. 42(3), pp. 1012-1022, 2022. 10.1016/j.bbe.2022.08.001
XXVI. R. G. Babukarthik, V. A. K. Adiga, G. Sambasivam, D. Chandramohan, and J. Amudhavel. : ‘PredictionofCOVID-19 using genetic deep learning convolutional neural network (GDCNN)’. IEEE Access. Vol. 8, pp. 177647-177666, 2020. 10.1109/access.2020.3025164
XXVII. R. Miotto, F. Wang, S. Wang, X. Jiang and J. T. Dudley. : ‘Deep learning for healthcare: review, opportunities and challenges’. Briefings in bioinformatics. Vol. 19(6), pp. 1236-1246, 2018. 10.1093/bib/bbx044
XXVIII. R. Qureshi, B. Zou, T. Alam, J. Wu, V. Lee and H. Yan, : ‘Computational methods for the analysis and prediction of egfr-mutated lung cancer drug resistance: Recent advances in drug design, challenges and future prospects’. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2022). 10.1109/TCBB.2022.3141697
XXIX. S.Y. Lu, S.H. Wang, X. Zhang, and Y.D. Zhang. : ‘TBNet: a context-aware graph network for tuberculosis diagnosis’. Computer Methods and Programs in Biomedicine. Vol. 214, 106587, 2022. 10.1016/j.cmpb.2021.106587
XXX. S. Sengan, L. Arokia Jesu Prabhu, V. Ramachandran, V. Priya, L. Ravi, and V. Subramaniyaswamy. : ‘Images super-resolution by optimal deep AlexNet architecture for medical application: a novel DOCALN’. Journal of Intelligent & Fuzzy Systems. Vol. 39(6), pp. 8259-8272, 2020. 10.3233/JIFS-189146
XXXI. S. H. Karaddi, and L. D. Sharma. : ‘Automated multi-class classification of lung diseases from CXR-images using pre-trained convolutional neural networks’. Expert Systems with Applications. Vol. 211, 118650, 2023.
XXXII. S. Tammina. : ‘Transfer learning using vgg-16 with deep convolutional neural network for classifying images’. International Journal of Scientific and Research Publications (IJSRP), Vol. 9(10), pp. 143-150, 2019. 10.29322/IJSRP.9.10.2019.p9420
XXXIII. S. Krishnamoorthy, A. Dua, and S. Gupta. : ‘Role of emerging technologies in future IoT-driven Healthcare 4.0 technologies: A survey, current challenges and future directions’. Journal of Ambient Intelligence and Humanized Computing. Vol. 14(1), pp. 361-407, 2023. 10.1007/s12652-021-03302-w
XXXIV. S. Shamas, S. N. Panda and I. Sharma. : ‘Review on Lung Nodule Segmentation-Based Lung Cancer Classification Using Machine Learning Approaches’. In Artificial Intelligence on Medical Data: Proceedings of International Symposium, ISCMM 2021. Singapore: Springer Nature Singapore. Pp. 277-286, 2022. 10.1007/978-981-19-0151-5_24
XXXV. S. T. H. Kieu, A. Bade, M.H.A. Hijazi, M. H. A and H. Kolivand. : ‘A survey of deep learning for lung disease detection on medical images: state-of-the-art, taxonomy, issues and future directions’. Journal of imaging. Vol. 6(12), 131, 2020. 10.3390/jimaging6120131
XXXVI. S.M. Fati, E.M. Senan, and N. ElHakim. : ‘Deep and Hybrid Learning Technique for Early Detection of Tuberculosis Based on X-ray Images Using Feature Fusion’. Applied Sciences. Vol. 12(14), 7092, 2022. 10.3390/app12147092
XXXVII. S. Tiwari, S. Kumar, and K. Guleria, K., : ‘Outbreak trends of coronavirus disease–2019 in India: a prediction’. Disaster medicine and public health preparedness. Vol. 14(5), pp. e33-e38, 2020. 10.1017/dmp.2020.115
XXXVIII. V. Kumar, H. Patel, K. Paul, and S. Azad. : ‘Deep Learning Assisted Retinopathy of Prematurity (ROP) Screening’. ACM Transactions on Computing for Healthcare. Vol. 4(3), Article No.: 18, pp. 1–32, 2023. 10.1145/3596223\
XXXIX. V. Sharma, N. Mishra, V. Kukreja, A. Alkhayyat and A. A. Elngar. : ‘Framework for Evaluating Ethics in AI’. 2023 International Conference on Innovative Data Communication Technologies and Application (ICIDCA), Uttarakhand, India. pp. 307-312, 2023. 10.1109/ICIDCA56705.2023.10099747.
XL. W. Wang, M. Zhang, G. Chen, H.V. Jagadish,B.C. Ooi and K. L. Tan. : ‘Database meets deep learning: Challenges and opportunities’. ACM SIGMOD Record. Vol. 45(2), pp. 17-22, 2016. 10.1145/3003665.3003669

View | Download