Authors:
M. L. Fil’chenkov,Yu. P. Laptev,DOI NO:
https://doi.org/10.26782/jmcms.2019.03.00043Keywords:
Kerr–Newman Black Holes ,Relativistic Deflection of Light,Abstract
The Kerr-Newman, Schwarzschild, Reissner-Nordström, Kerr and Lense-Thirring metrics have been presented. The deflection of light by Kerr–Newman’s black hole has been evaluated. Expressions for the law of motion and trajectory of light have been obtained. The black hole is assumed to be slowly rotating. The light impact parameter is considered to be much superior to the gravitational radius and classical radius of the black hole. The deflection of light is both due to attraction by the black hole mass and due to repulsion by its charge and specific angular momentum.Refference:
I.Chandrasekhar S. (1983).The Mathematical Theory of Black Holes. Clarendon Press, Oxford.
II.EddingtonA. (1923). The Mathematical Theory of Relativity. University Press, Cambridge.
III.Fil’chenkov M., Laptev Yu. (2017). Evolution of two-horizon metrics revisited. Grav. Cosmol. 23(4): 381.
IV.Fil’chenkov M., Laptev Yu. (2016). Quantum Gravity. Lenand, Moscow (in Russian).
V.Hawking S. (1975). Particle creation by black holes. Comm. Math. Phys. 43: 199.
VI.Kerr R. (1963). Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11: 237.
VII.Lense J., Thirring H. (1918).Überden Einfluss des Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der EinsteinischenGravitationstheorie. Phys. Zs. 19: 156.
VIII.Misner C., Thorne K., Wheeler J. (1973). Gravitation. W.H. Freeman and Co., San Francisco.
IX.NewmanE. et al. (1965). Metric of a rotating, charged mass. J. Math. Phys., 6: 918.
X.Nordström G. (1918). On the energy of the gravitational field in Einstein’s theory. Proc. Kon. Ned. Akad. Wt., 20: 1238.
XI.Novikov I., Frolov V. (1998).Black Hole Physics: Basic Concepts and New Developments, Springer.Dordrecht.
XII.Penrose R. (1969). Sources of the ultra-high energy cosmic rays. NuovoCimento,1: 252.
XIII.Reissner H. (1916). Über die Eigengravitation des elektrischenFeldesnach der EinsteinischenTheorie. Ann. Phys., 50: 106.
XIV.Schwarzschild K. (1916). Über das GravitationsfeldeinesMassenpunktesnachEinsteinischenTheorie. Sitz. Preuss. Akad. Wiss., 1: 189.
XV.Weinberg S.(1972).Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. J. Wiley and Sons, Inc., N. Y.
View | Download