Authors:
Liliya A. Mityaeva,Maxim A. Lyashkov,Anna O. Matvienko,Yulia Yu. Ariskina,DOI NO:
https://doi.org/10.26782/jmcms.spl.10/2020.06.00029Keywords:
Treated stock-breeding wastewater,irrigation system,irrigation mode,drop irrigation,subterranean irrigation,Abstract
This study aims to improve the process flow design of the moistening fertilizer irrigation system using treated stock-breeding wastewater. To irrigate perennial grass, it is necessary to make three applications of stock-breeding wastewater at a rate of 60 m3/ha and natural water at a rate of 1 640 m3/ha in which case the supply of nitrogen, phosphorus, and potassium will be 970, 180, and 944 kg/ha, respectively. The irrigation of corn for ensilage requires making four applications of treated stock-breeding wastewater at a rate of 46 m3/ha and natural water at a rate of 654 m3/ha, whereas the amount of nutrient enrichment shall be N776P187K566. The combined process flow design of moistening and fertilizing with treated stock-breeding wastewater allows ensuring the input of a preset irrigation rate to the drop irrigation system simultaneously with the input of organic mineral fertilizer to the subterranean irrigation system. According to the agroecological assessment of the soil cover, the new system makes the soil more fertile. It is noted herein that the humus, phosphorus, potassium, and nitrate nitrogen content rose by 0.03 to 0.09 %, 30, 10, and 110 %, respectively. The increase in the metabolic calcium content from 64 to 75 % on average in the 0 to 60 cm layer and the reduction in the metabolic sodium content by 2.3 % of the total SAC decreased the intensity of salt accumulation in the soil.Refference:
I. Alghobar, M. A., Ramachandra, L., and Suresha, S. Effect of sewage water irrigation on soil properties andevaluation of the accumulation of elements in Grass crop inMysore city, Karnataka, India. American Journal of Environmental Protection.2014; 3(5): 283-291.Published online November 20, 2014.DOI: 10.11648/j.ajep.20140305.22.
II. Ayars, J.E., Phene, C.J., Hutmacher, R.B., Davis, K.R., Schoneman, R.A., Vail, S.S., and Mead, R.M. Subsurface drip irrigation of row crops: a review of 15 years of research at the Water Management Research Laboratory. Agricultural Water Management. 1999; 42 (1): 1–27.
III. Capra, A. and Scicobone, B. Emitter and filter tests forwastewater reuse by drip irrigation. Agricultural Water Management. 2004; 68 (2): 135–149.
IV. Domashenko,Yu., and Vasilyev, S.Agroecological Substantiation for the Use of Treated Wastewater for Irrigation of Agricultural Land. Journal of Ecological Engineering. 2018; 19 (1): 48–54. DOI: https://doi.org/10.12911/22998993/79567.
V. Domashenko, Yu. Ye. Problems and Prospects of Utilizing Wastewater for Irrigation: monograph [Problemyiperspektivyis-pol’zovaniyastochnykhvoddlyaorosheniya: monografiya]. Novocherkassk: Lik, 2017.
VI. Domashenko, Yu. Ye.,Vlasov, M. V., Vasilyev, S. M., and Matviyenko, A. O. Environmental Economic Justification of Utilizing Wastewater in Irrigation Systems Based on Dynamic Programming [Ekologo-ekonomicheskoyeobosnovaniyeis-pol’zovaniyastochnykhvodnaorositel’nykhsistemakhnaosnovemetodadinamicheskogoprogrammirovaniya]. NauchnyyzhurnalRossiyskogoNII problem melioratsii (Scientific Journal of Russian Scientific Research Institute of Land Improvement Problems). 2017; 3(27): 32-42. Novocherkassk: RosNIIPM, 2017.Available at: http://www.rosniipm-sm.ru/archive?n=491&id=494.
VII. Dospekhov, B. A. Field Trial Procedure with Basics of Statistical Processing of Study Results [Metodikapolevogoopyta (s osnovamistatisticheskoyobrabotkirezul’tatovissledovaniy)]. Fifth revised edition. Moscow: Agropromizdat, 1985.
VIII. Dunca, E., Ciolea, D.-I., and Matei, A. The eco-technologies based on extensively natural treatment wastewater in rural and suburban areas the purpose of recovering the energy and nutrients. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 2014; 1 (5): 689-694.
IX. Grant, S. A., Kunze, R.j., and Asrar, G. Irrigation with simulated secondary waste water on tiled soil cropped to bromegrass and corn(Conference Paper). Journal of Environmental Quality, 1982; 11 (3): 442-446.
X. Green, O., Katz, S., Tarchitzky, J., and Chen. Yo. Formation and prevention of biofilm and mineral precipitate cloggingin drip irrigation systems applying treated wastewater. Irrigation Science. 2018; 36: 257–270.
XI. Golchenko, M. G. and Zhelyazko, V. I. Irrigation with Effluents [Orosheniyestochnymivodami]. Moscow: Agropromizdat, 1988.
XII. Gostishchev, D. P. Irrigation with Effluents of Stock-Breeding Unit in Rostov Oblast’ [Orosheniyestochnymivodamizhivotnovodcheskogokompleksa v Rostovskoyoblasti] in Proceedings of International Scientific Research-to-Practice Conference “Resource Saving and Ecofriendly Technologies of Land Improvement, Reclamation, and Protection”. Novocherkassk, 2004. Pp. 43-47.
XIII. Gostishchev D. P., Khvatysh, N. V., and Valiyev D. S. Environmental Protection Problems of Irrigation with Watewater and Stock-Breeding Effluents [Ekologicheskiyeproblemyokhranyokruzhayushcheysredyprioroshe-niistochnymivodamiizhivotnovodcheskimistokami]. NauchnyyzhurnalRossiyskogoNII problem melioratsii (Scientific Journal of Russian Scientific Research Institute of Land Improvement Problems). 2016; 3(23): 13. Novocherkassk: RosNIIPM, 2016.Available at: http://www.rosniipm-sm.ru/archive?n=424&id=439
XIV. Gostishchev, D. P., Vershinin, V. V., and Khvatysh, N. V. Disposal of Effluents and Stock-Breeding Wastewater on Irrigation Fields [Utilizatsiyas-tochnykhvodizhivotnovodcheskikhstokovnapolyakhorosheniya]. Evraziyskiy Soyuz Uchenykh (Eurasian Union of Scientists). 2015; 7-7(16): 7-12.
XV. Hassanli, A. M., Mohammad, A. Ebr., and Beecham, S. The effects of irrigation methods with effluent andirrigation scheduling on water use efficiencyand corn yields in an arid region. Agriculural Water Management. 2009; 96: 93 – 99.
XVI. Kaboosi, K. The assessment of treated wastewater quality and the effectsof mid-term irrigation on soil physical and chemical properties(case study: Bandargaz-treated wastewater). Applied Water Science. 2017. 7:2385–2396. – DOI 10.1007/s13201-016-0420-5
XVII. NTP APK 1.30.03.01-06 Process Engineering Codes of Irrigation Systems Using Stock-Breeding Wastewater – Introduction [Normytekhnologicheskogoproyektirovaniyaorositel’nykhsistem s ispol’zova-niyemzhivotnovodcheskikhstokov. –Vved.]. 2007-01-01. IS “Techexpert: Generation 6” Intranet [Electronic resource]. Codex Yug, 2019.
XVIII. Oron, G., DeMalach, J., Hoffman, Z., and Cibotaru, R. Subsurface microirrigation with effluent. Journal of Irrigation and Drainage Engineering. 1991; 117(1): 25–36.
XIX. Redina, A. V., Domashenko, Yu. Ye., and Vasilyev, S. M. Soil Suitability Assessment of Stock-Breeding Wastewater Used to Irrigate Southern Black Earth [Agromeliorativnayaotsenkaochishchennykhzhivotnovod-cheskikhstochnykhvodpriorosheniichernozemovyuzhnykh]. IzvestiyaOrenburgskogogosudarstvennogoagrarnogouniversiteta (News of Orenburg State Agrarian University). 2017; 6(68): 8-11.
XX. Rekik, I.,Chaabane, Z., Missaoui, A., Boukeet, A. A., Luptakova, L., Elleuch, A., and Belbahri, L. Effects of untreated and treated wastewater at the morphological, physiological and biochemical levels on seed germination and development of sorghum (Sorghum bicolor (L.) Moench), alfalfa (Medicago sativa L.) and fescue (FestucaarundinaceaSchreb.). Journal of Hazardous Materials. 2017; 326: 165-176.
XXI. Resource-Saving Actions for Cultivating Field Crops in Irrigated Farming Rotations of Rostov Oblast’ (Guidelines) [Resursovlagosberegayushchiyepriyemyvozdelyvaniyapolevykhkul’tur v oroshaye-mykhsevooborotakhRostovskoyoblasti (rekomendatsii)]. Novocherkassk: Lik, 2014.
XXII. Romanenko, G. A. et al. Concept of Agricultural Land Improvement in Russia [Kontseptsiyamelioratsiisel’skokhozyaystvennykhzemel’ v Rossii]. Moscow: NIA-Priroda, 2009.
XXIII. Ruskin, R. Reclaimed water and subsurface irrigation. 1992. ASAE Paper No. 92-2578. ASAE, St. Joseph, Michigan.
XXIV. Shchedrin, V. N., Kolganov, A. V., Vasilyev, S. M., and Churayev, A. A. Irrigation Systems in Russia: from Generation to Generation: monograph, pt. 2 [Orositel’nyyesistemyRossii: otpokoleniya k pokoleniyu: monografiya, ch. 2]. Novocherkassk: Gelikon, 2013.
XXV. State report “On Ambient Conditions and Environmental Protection in Russia in 2016” [Gosudarstvennyydoklad «O sostoyaniiiobokhraneokruzhayushcheysredyRossiyskoyFederatsii v 2016 godu». Moscow: Ministry of Natural Resources of Russia; NIA-Priroda, 2017.
XXVI. Ulrich, H., Klaus, D., Irmgard, F., Annette, H., Juan, L.-P., Regine, S.Microbiological investigations for sanitary assessment of wastewater treated in constructed wetland. Water Research. 2005; 39(20): 4849-4858.
XXVII. Vasilyev, S. M., Chelakhov, Ts., and Vasilyeva, Ye. A. Environmental Concept of Assessing Influence of Irrigation Systems on Landscapes in Lower Don Region: monograph [Ekologicheskayakontseptsiyaotsenkivoz-deystviyaorositel’nykhsistemnalandshaftyNizhnego Dona: monografiya]. Roston-on-Don: North Caucasus Scientific Center of Higher School, 2005.
XXVIII. Vasilyev, S. M. and Domashenko, Yu. Ye. RF Patent 2551505. IPC С02F 1/52. Method of Treating Liquid Waste from Pig-Breeding Complexes and Farms for Utilization in Agriculture [Sposobpodgotovkizhidkikhotkho-dovsvinovodcheskikhkompleksovifermdlya-sel’skokhozyaystvennogoispol’zovaniya]. No. 2013131344/05. Appl. from 08.07.2013; publ. 27.05.2015. Bulletin No. 15.
XXIX. Wang, M., Peng, C., Chen, W., and Markert, B. Ecological risks of polycyclic musk in soils irrigated with reclaimed municipal wastewater. Ecotoxicology and Environmental Safety. 2013; 97: 242-247.
View | Download