Microstrip Antenna Synthesis Using an Application Programming Interface

Authors:

I. Bouchachi,A. Reddaf,K. Ferroudji,M. Boudjerda,K. Hamdi-Cherif,S. Satta,

DOI NO:

https://doi.org/10.26782/jmcms.spl.4/2019.11.00016

Keywords:

Application Programming Interface,Microstrip Antenna,Optimization Algorithm,

Abstract

For the synthesis or the modeling of passive microwave structures like antennas, filters, adapters...etc, the simulation plays a very important role. It allows us to get precise estimation of the structure response without having to realize it. In order to synthesis a micro-strip antenna, we create an Application Programming Interface (API) between two softwares. The first one is MATLAB and the second is Ansys HFSS. The error rate between obtained and desired results is used to estimate the optimal dimensions of the structure using Practical Swarm Optimization technique. This method proofs to be effective in synthesizing a micro-strip antenna even for complicated geometry.

Refference:

I. Ansoft Corporation, (2007). Introduction to Scripting in HFSS, 2007, Ansoft
Corporation, 225 West Station Square Drive Suite 200 Pittsburgh, PA 15219
USA.
II. Booton, R. C. (1992). Computational methods for electromagnetics and
microwaves. Wiley. ii
III. Bouchachi, I., Hamdi-Cherif, K., Ferroudji, K., Boudjreda, M., Reddaf, A., &
Riabi, M. L. (2018). A Comparison of Genetic Algorithm and Practical
Swarm Optimization for the Design of Waveguide Filters. In International
Telecommunications Conference. Springer, Singapore. . pp. 89-98
IV. Ferroudji, K., Benoudjit, N., & Bouakaz, A. (2017). An automated
microemboli detection and classification system using backscatter RF signals
and differential evolution. Australasian physical & engineering sciences in
medicine, 40(1). pp. 85-99.
V. Garg, R., Bhartia, P., Bahl, I. J., & Ittipiboon, A. (2001). Microstrip antenna
design handbook. Artech house.
VI. Howell, J. (1972). Microstrip antennas. IEEE on antennas and propagation
Int. Symp Microstrip Antennas”, vol.10, pp. 177-180.
VII. Haupt, R. L., & Werner, D. H. (2007). Genetic algorithms in
electromagnetics. John Wiley & Sons.

VIII. Haupt, R. L., & Werner, D. H. (2007). Genetic algorithms in
electromagnetics. John Wiley & Sons.
IX. Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization, IEEE, pp.
1942-1948.
X. Liu, J. B., Shen, Z. X., & Lu, Y. L. (2014). Optimal antenna design with
QPSO–QN optimization strategy. IEEE Transactions on Magnetics, 50 (2).
pp. 645-648.
XI. Marcuvitz, N. (1986). Waveguide Handbook (IEEE Electromagnetic Waves
Series). The Institution of Engineering and Technology.
XII. MathWorks, Inc. (1998). MATLAB The Language of Technical
Computing, Application Program Interface Guide, Version 5, The
MathWorks, Inc.
XIII. MathWorks, Inc. (2001). MATLAB The Language of Technical Computing,
Using MATLAB, Version 6, The MathWorks, Inc.
XIV. Rizzi, P. A. (1988). Microwave engineering: passive circuits. Prentice Hall.
XV. Shu-hui, S. U. N., & Bing-zhong, W. A. N. G. (2005). Parameter
optimization based on GA and HFSS. Journal of Electronic Science and
Technology, 3(1).pp . 45-47.
XVI. Sullivan, D. M. (2013). Electromagnetic simulation using the FDTD method.
John Wiley & Sons. xv
XVII. Volakis, J. L., Chatterjee, A., & Kempel, L. C. (1998). Finite element method
electromagnetics: antennas, microwave circuits, and scattering applications.
Vol. 6. John Wiley & Sons.

View | Download