MATHEMATICAL MODELS OF NETWORK TERRORISM: FORMALIZING THE DESCRIPTION FOR WEIGHTED NETWORKS

Authors:

Denis G. Plotnikov,Grigory A. Ostapenko,Vasily I. Borisov,Larisa V. Parinova,Nikolay M. Tikhomirov,

DOI NO:

https://doi.org/10.26782/jmcms.spl.8/2020.04.00005

Keywords:

Information network,network terrorism,network conflict model,risk analysis,critical infrastructure,

Abstract

Terrorist attacks and their probable consequences in networks are explored with the account of the network character of the modern terrorism. By using the network resources, the structure of a network conflict of terrorist character is formalized including the metrics of its depth. Probability and entropy models of a network conflict of terrorist character are proposed, taking into account the analytical estimations and regulation of risks of conflict situations occurrence. Viewing such characteristics as the value of a filler volume unit and the network bandwidth, the authors propose analytical expressions for risk, damage, chance and durability of the critical infrastructure elements.

Refference:

I. Antsupov, A.Ya., & Shilov, A.I. (2007). Conflictology: textbook for higher educational institutions. Saint Petersburg: Sankt Peterburg.

II. Bachilo, I.L. (2001). Informational law: fundamentals of practical information science: tutorial. Moscow: M.Yu. Tikhomirov Publishers.

III. Bachilo, I.L., & Belov, G.V. (1992). On the concept of legal support of informatization in Russia. Legislative problems of society informatization. Moscow: Mir.

IV. Bachilo, I.L., Lopatin, V.N., Fedotov, M.A., et. al. (2001). Informational law: tutorial. Saint Petersburg: Law Center.

V. Byrd, K. (2009). War with many unknowns. Computerra, 20, 5.

VI. Ermakov, S.A., Zavorykin, A.S., Kolenbet, N.S., Ostapenko, A.G., & Kalashnikov, A.O. (2014). Optimization of expert methods used to analyze information security risk in modern wireless networks. Life Science Journal, 11(10s), 511-514.

VII. Grinyaev, S. Russia in the global information society: threats, risks and possible ways of their neutralization. Retrieved from: http://www.noravank.am/upload/pdf/419_ru.pdf.

VIII. Islamgulova, V.V., Ostapenko, A.G., Radko, N.M., Babadzhanov, R.K., & Ostapenko, O.A. (2016). Discreet risk-models of the process of the development of virus epidemics in non-uniform networks. Journal of Theoretical and Applied Information Technology, 306-315.

IX. Kalashnikov, A.O., Yermilov, E.V., Choporov, ON., Razinkin, K. A., & Barannikov, N.I. (2013). Attacks at crucial objects of informational and technological infrastructure: risks assessment and regulation: monograph. Voronezh: Scientific Book.

X. Korovin, V. (2009). Main military secret of the USA. Network wars. Moscow: EKSMO.

XI. Lisichkin, V., & Shelepin, L., (1999). Third world information war of nerves. Moscow.

XII. Miroshnikov, B. N. (2002). Fighting against crimes in the sphere of information technologies. Security systems, 5(47), 10-11.

XIII. Newman, M.E.J. (2001). The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409.

XIV. Newman, M.E.J. (2003a). Ego-centered networks and the ripple effect. Soc. Networks, 25, 83–95.

XV. Newman, M.E.J. (2003b). Mixing patterns in networks. Phys. Rev. E 67.

XVI. Newman, M.E.J. (2003c). The structure and function of complex networks. SIAM Rev. 45, 167–256.

XVII. Newman, M.E.J. (2005). A measure of betweenness centrality based on random walks. Soc. Networks, 27, 39–54.

XVIII. Newman, M.E.J. Power laws, Pareto distributions and Zipf’s law. Retrieved from: https://vk.com/dev/openapi_api.

XIX. Newman, M.E.J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Phys. Rev. E 69, 72–93.

XX. Nikitov, V.A. (2000). Information support of public administration. Moscow: Slavonic dialogue.

XXI. Ostapenko, A.G., Bursa, M.V., Ostapenko, G.A., & Butrik, D.O. (2014). Flood-attacks within the hypertext information transfer protocol: damage assessment and management. Biosciences Biotechnology Research Asia, 11, 173-176.

XXII. Ostapenko, A.G., Yermilov, E.V., & Kalashnikov, A.O. (2013a). Risks of lameness, chances of usefulness and component resilience of automated systems under conditions of information threats impact on them. Information and safety, 16(2), 215-218.

XXIII. Ostapenko, A.G., Yermilov, E.V., & Kalashnikov, A.O. (2013b). Innovative trends and information risks of development of the IT sphere in the context of providing crucial objects. Information and safety, 16(3), 323-334.

XXIV. Ostapenko, G.A. (2006). Stochastic Models and the Secondary Effects Analysis of the Informational-Derivative Action in the Sociotechnical Systems. CSIT 2, 32-34.

XXV. Ostapenko, G.A., Karpeev, D.O., Plotnikov, D.G., Batishchev, R.V., Goncharov, I.V., Maslikhov, P.A., et al. (2010). Risks of the distributed systems: techniques and algorithms of assessment and management. Information and safety, 13(4), 485-530.

XXVI. Ostapenko, G.A., Linets, A.L., Guzev, Yu.N., & Chapurin, E.Yu. (2015). Characteristics of the network conflict and capacities of networks. Management of information risks and safety of infocommunication systems, 4, 72-92.

XXVII. Ostapenko, G.A., Parinova, L.V., Belonozhkin, V.I., Bataronov, I.L., & Simonov, K.V. (2013). Analytical models of information-psychological impact of social information networks on users. World Applied Sciences Journal, 25 (3), 410-415.

XXVIII. Ostapenko, G.A., Plotnikov, D.G., Makarov, O.Y., Tikhomirov, N.M., & Yurasov, V.G. (2013). Analytical estimation of the component viability of distribution automated information data system. World Applied Sciences Journal, 25 (3), 416-420.

XXIX. Ostapenko, O.A. (2005). Methodology of a risk assessment and securities of systems. Information and safety, 8(8), 28.

XXX. Panarin, I.N., & Panarin, L.G. (2003). Information war and peace. Moscow: OLMA-PRESS.

XXXI. Pastor–Satorras, R., & Vespignani, A. (2001a). Epidemic dynamics, endemic states in complex networks. Phys. Rev. E., 101 – 104.

XXXII. Pastor–Satorras, R., & Vespignani, A. (2001b). Epidemic Spreading in Scale–Free Networks. Phys. Rev. Lett. 86, 45 – 56.
XXXIII. Pastor–Satorras, R., & Vespignani, A. (2002). Absence of epidemic threshold in scale–free networks with connectivity correlations. Phys. Rev. Lett. Pub.: American Physical Society, 90(2), 1 – 4.

XXXIV. Pastor–Satorras, R., & Vespignani, A. (2003). Epidemic spreading in complex networks with degree correlations. Contribution to the Proceedings of the 28th Sitges Conference ‘Statistical Mechanics of Complex Networks’. Berlin, 165 – 170.

XXXV. Pastor–Satorras, R., & Vespignani, A. (2004). Topology, Hierarchy, Correlations in Internet Graphs. Lecture Notes in Physics. Springer, 425 – 440.

XXXVI. Radko, N.M., Ostapenko, A.G., Mashin, S.V., Ostapenko, O.A., & Avdeev, A.S. (2014). Peak risk assessing the process of information epidemics expansion. Biosciences Biotechnology Research Asia, 11, 251-255.

XXXVII. Radko, N.M., Ostapenko, A.G., Mashin, S.V., Ostapenko, O.A., & Gusev, D.V. (2014). Assessment of the system’s EPI-resistance under conditions of information epidemic expansion. Biosciences Biotechnology Research Asia, 11 (3), 1781-1784.

View | Download