EFFECT OF SVM AND ADVANCED SVM ON THE FLUX AND TORQUE RIPPLE OF DTC IM DRIVE

Authors:

Naresh.B,Vijayakmar.M,Yadaiah Narri,

DOI NO:

https://doi.org/10.26782/jmcms.spl.5/2020.01.00002

Keywords:

Direct Torque Control (DTC),Space Vector Modulation (SVM),Advanced Space Vector Modulation (ASVM),Flux Ripple,Torque Ripple,

Abstract

This The direct torque control (DTC)operation merely depends on the selection of inverter switching sequences with look-up table thereby stator flux of the motor is not exactly equal to desired reference which causing high flux and torque ripple. This paper considers the effect of switching sequences of space vector modulation (SVM) and advanced space vector modulation (ASVM) on the performance of DTC. The SVM comprises unique pattern of switching sequences whereas ASVM is having two different patterns of switching sequences in the every sector which influences on the d-q axes flux distortion it shows significant effect on the ripple. The interpretation of ASVM versus SVM switching sequences required for the analysis of flux and torque ripple is shown with the case study of DTC. The flux ripple analysis shows that q-axis flux distortion merely effects on the torque ripple and d-axis flux distortion effects on flux ripple. The performance investigation of induction motor with DTC using SVM and proposed ASVM strategies are verified with simulations and experimental results. The experimental verification is conducted with Opal-RT real time digital simulator

Refference:

I. A. Sikorski, M. Korzeniewski, A. Ruszczyk, M. P. Kazmierkowski, P.
Antoniewicz, W. Kolomyjski, M. Jasinski, “A Comparison of Properties of
Direct Torque and Flux Control Methods (DTC-SVM, DTC-δ, DTC-2×2, DTFC-
3A)”, International Conference on “Computer as a Tool” – EUROCON, pp.
1733-1739, 2007.
II. A. Tripathi, A. M. Khambadkone, S. K. Panda, “Torque ripple analysis and
dynamic performance of a space vector modulation based control method for
AC-drives,” IEEE Trans. Power Electron., Vol.: 20, Issue: 2, pp. 485–492, 2005.
III. B. Naresh, K. V. Kumar, Y. Narri, “DTC of induction motor with advanced
SVM strategies” IEEE Region 10 Conference (TENCON-2017), pp. 1737-1742,
2017.
IV. C. Lascu, I. Boldea, F. Blaabjerg, “A Modified Direct Torque Control for
Induction Motor Sensorless Drive” IEEE Trans. on Industry Applications, Vol.
36, Issue: 1, pp. 122-130, 2000.
V. D. Casadei, F. Pmfumo, G. Serra, A. Tani, “FOC and DTC: two viable schemes
for iuduction motors torque control,” IEEE Trans. Power Elect., Vol.: 17, Issue:
5, pp. 779-787, 2002.
VI. D. Soumitra, C. B. Arathil, G. Narayanan, “Analytical evaluation of harmonic
distortion factor corresponding to generalized bus-clamping pulse widt
modulation” IET Trans. Power Electron., Vol.: 7, Issue: 12, pp.3072-3082,
2014.
VII. D. Stando, M. P. Kazmierkowski,”Novel speed sensorless DTC-SVM scheme
for induction motor drives,”International Conference on Compatibility and
Power Electronics (CPE), pp.225-230, 2013.
VIII. D. Zhao, R. Ayyanar, “Space Vector PWM with DC link Voltage Control and
using Sequences with Active State Division,” Ind. Electron., in Proc. IEEE Int.
Symp., Vol. 2, pp. 1223–1228, 2006.
IX. E. Ozkop, H. I. Okumus, “Direct Torque Control of Induction Motor using space
vector modulation (SVM-DTC)”, Power System Conj., MEPCON, pp. 368-372,
2008.
X. F. Mak, R. Sundaram, V. Santhaseelan, S. Tandle, “Laboratory setup for Real-
Tme study of Electyric Drives with integrated interfaces for Test and
Measurement”, 38th ASEE/IEEE Frontier in Eductaion Conference, NY,
pp.T3H-1 to T3H-6, 2008.
XI. G. Adamidis, Z. Koustsogiannis, P. Vagdatis, “Investigation of the Performance
of a variable-speed Drive using Direct Torque control with Space Vector
Modulation” Tylor & Francis Trans. on Electric Power Components and
Systems, Vol.: 39, pp. 1227-1243, 2011.
XII. G. Narayanan, D. Zhao, H. K. Krishnamurthy, R. Ayyanar, V. T. Ranganathan,
“Space vector based hybrid PWM techniques for reduced current ripple,” IEEE
Trans. Ind. Electron., Vol.: 55, Issue: 4, pp. 1614–1627, 2008.

XIII. G. Narayanan, H. K. Krishnamurthy, Di Zhao, R. Ayyanar “Advance busclamping
PWM techniques based on space vector approach,” IEEE Trans. Power
Electron., Vol.: 21, Issue: 4, pp. 974–984, 2006.
XIV. G. S. Buja, M. P. Kazmierkowski, “Direct torque control of PWM inverter-fed
AC motors – a survey,” IEEE Trans. Ind. Appl., Vol.51, pp.744-757, 2004.
XV. I. Takahashi, T. Noguchi, “A new quick-response and high- efficiency control
strategy of an induction motor,” IEEE Trans. Ind. Appl., Vol. 22, Issue: 5, pp.
820-827,1986.
XVI. J. K. Kang, S. K. Sul, “New direct torque control of induction motor for
minimum torque ripple and constant switching frequency”, IEEE Trans. Ind.
Appl., Vol.35, Issue: 5, pp.1076–1082, 1999.
XVII. K. K. Shyu, J. K. Lin, V.T. Pham, M. J. Yang, T. W. Wang, “Global minimum
torque ripple design for direct torque control of induction motor drives,” IEEE
Trans. Ind. Electron., Vol. 57, Issue: 9, pp. 3148–3156, 2010.
XVIII. K. P. M. Sheif, J. Peter, R. Ramachand, “Spaced Vector based hybrid PWM for
VSI fed varaible speed induction motor drives” IEEE Annual India Conference
(INDICON), pp. 1-6, 2016.
XIX. M. Wang, J. Yang, C. Zhu, “Hybrid SVPWM technique for reduced torque
ripple in permanent magnet synchronous motor,” International Power Electronics
and Application Conference and Exposition, pp. 1297-1302, 2014
XX. N. Rumzi, N. Idris, C. L. Toh, M. E. Elbuluk, “A new torque and flux controller
for direct torque control of induction motor”, IEEE Trans. on Industry
Applications, Vol. 42, Issue: 6, pp. 1358-1366, 2006.
XXI. T. G. Habetler, F. Profumo, M. Pastorelli, L. M. Tolbert, “Direct Torque Control
of Induction Machines Using Space Vector Modulation,” IEEE Trans. on
Industry Applications, Vol. 28, Issue: 5, pp. 1045-1053, 1992.

View | Download