Authors:
Galina Yu. Rabinovich,Daria V. Tikhomirova,DOI NO:
https://doi.org/10.26782/jmcms.spl.10/2020.06.00033Keywords:
Abstract
The Department of Biotechnologies at the VNIIMZ (Tver oblast’, Russia) has developed the method of making new organic biofertilizerBiGuEM based on chicken (poultry) manure and turf. The peculiarity of the new method is that it involves alkalizing the turf-manure mix, followed by adding various kinds of biostimulants. The basic method of making BiGuEm has been patented, and its modified versions are currently being patented one by one. This work was aimed at evaluating the results of screening assays for choosing the best way of producing BiGuEm that had gained an edge on the other processes upon the addition of the new biostimulant to the initial fermented mass. In the end, that biostimulant demonstrated the highest efficiency. The choice of the most efficient BiGuEm production process was made by a set of methods of biochemical, microbiological, and agrochemical analyses conducted, considering their behavior. Three variants of producing BiGuEm were studied, and it was recognized that the best one was a modified process called S3 and run using a complex-component stimulant, including the combination of citric acid and acetic magnesium. That process corresponded to the maximum reductive-oxidative coefficient (ROC) that indicated the active catabolic orientation of transformative conversions, reached 0.91 at the end of bioprocessing, and signaled, through mobilizedmicrobial flora, about the accumulation of available nutrients in the biofertilizer. In addition, a significant increase in the level of invertase activity was observed by the end of fermenting at thesynchronousrecedingactivity of cellulase,which pointed at the advancing replacement of substrates for its activity with low-molecule compounds. It was found out that the highest fractions (% per abs.dr.subs.) in the biofertilizer produced by S3 belonged tosuch fertilizer elements as phosphorus(Р2О5) (2.52) and potassium (К2О) (1.44). The high carbon content of up to 31.85 indicated that the resulting biofertilizer possessed a considerable energy potential. According to the interpretation of the set of the results, the production of BiGuEm using citric acid and acetic magnesium was related to one of the most prospective processes for further elaboration and testing on different agricultural crops.Refference:
I. Abu-Bakar, N.-A., & Ibrahim, N. Indigenous microorganisms production and the effect on composting process. 2013. doi:10.1063/1.4858669
II. Baldi, E. and Toselli, M. Mineralization dynamics of different commercial organic fertilizers from agro-industry organic waste recycling: an incubation experiment. Plant, Soil and Environment. 2018; 3 (60): 93–99. doi:10.17221/735/2013-pse
III. Belyuchenko I. S., Gukalov V. V., and Slavgorodskaya D. A. Method of Composting Post-Harvesting Vegetation Residues of Farming Crops [Sposobkompostirovaniyaposleuborochnykhrasti-tel’nykhostatkovsel’skokhozyaystvennykhkul’tur]. 2014. RF patent 2529174. Retrieved from http://www1.fips.ru/fips_servl/fips_servlet?DB=RUPAT&rn=8076&DocNumber=2529174&TypeFile=html
IV. Bolgova I. V., Shaposhnikova I. A., and Fando R. A. Mendeleev Table in Living Organisms [TablitsaMendeleyeva v zhivykhorganizmakh]. Biologiya (Biology). 2008; 5: 13-18.
V. Chen, Z., & Jiang, X. Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review. Agriculture. 2014; 4(1): 1–29. doi:10.3390/agriculture4010001
VI. Choi, H. L., Richard, T. L., &Ahn, H. K. Composting High Moisture Materials: Biodrying Poultry Manure in a Sequentially Fed Reactor. Compost Science & Utilization. 2001; 9 (4): 303–311. doi:10.1080/1065657x.2001.10702049
VII. Dziejowski, J. E. and Kazanowska, J. Heat Production During Thermophilic Decomposition of Municipal Wastes in the Dano-System Composting Plant. 2002. Microbiology of Composting. doi:10.1007/978-3-662-08724-4_9
VIII. Francou, C., Poitrenaud, M., &Houot, S. Stabilization of Organic Matter During Composting: Influence of Process and Feedstocks. Compost Science & Utilization. 2015; 13 (1): 72–83. doi:10.1080/1065657x.2005.10702220
IX. Gajdos, R. THE USE OF ORGANIC WASTE MATERIALS AS ORGANIC FERTILIZERS – RECYCLING OF PLANT NUTRIENTS. ActaHorticulturae. 1992; 302:325–334. doi:10.17660/actahortic.1992.302.30
X. Golabi, M. H., Denney, M. J., and Iyekar, C. Value of Composted Organic Wastes As an Alternative to Synthetic Fertilizers For Soil Quality Improvement and Increased Yield. Compost Science & Utilization. 2007; 15 (4): 267–271. doi:10.1080/1065657x.2007.10702343
XI. GOST 32044.1-2012.Feeds, mixed feeds and raw material. Determination of mass fraction of nitrogen and calculation of mass fraction of crude protein [Korma, kombikorma, kombikormovoyesyr’ye. Opredeleniye massovoy doli azota i vychisleniye massovoy doli syrogo proteina].
XII. GOST 26657-97. Fodders, mixed fodders, mixed fodder raw materials.
Methods for determination of phosphorus content[Korma, kombikorma, kombikormovoyesyr’ye. Metodyopredeleniyaobshchegofosfora]
XIII. GOST 30504-97.Fodders, mixed fodders and mixed fodder raw materials. Flame photometric method for determination of potassium content [Korma, kombikorma, kombikormovoyesyr’ye. Plamenno-fotometricheskiymetodsoderzhaniyaobshchegokaliya].
XIV. GOST 26213-91. Soils. Methods for determination of organic matter [Pochvy. Metodyopredeleniyaorganicheskogoveshchestva]
XV. Granik V. G. Medical Chemistry Basics [Osnovymeditsinskoykhimii]. Moscow: Vuzovskayanauka, 2001.
XVI. Hanč, A., Tlustoš, P., Száková, J., Habart, J., and Gondek, K. Direct and subsequent effect of compost and poultry manure on the bioavailability of cadmium and copper and their uptake by oat biomass. Plant, Soil and Environment.2018; 54 (7): 271–278. doi:10.17221/424-pse
XVII. Haug, R. T. Composting Design. The Science of Composting. 1996. doi:10.1007/978-94-009-1569-5_104
XVIII. Kadir, W. R., Ahmad, R., Kong, H. W., and Kostov, O. S. Amelioration of Composting Process by Fertilizers. Compost Science & Utilization. 2004; 12 (1): 80–85. doi:10.1080/1065657x.2004.10702161
XIX. Kollárová, M., Altmann, V., Jelínek, A.,&Češpiva, M. Effect of bio-technological agents on the composting process and gaseous emissions production from the composting process. Research in Agricultural Engineering. 2018; 52 (4): 145–151. doi:10.17221/4891-rae
XX. Kortei, N. and Quansah, C. Influence of compost prepared from household waste and poultry manure in compost- soil mixtures on the growth and yield of Lettuce (Lactuca sativa L). Scientia Agriculturae. 2016; 13(3). doi:10.15192/pscp.sa.2016.13.3.163167
XXI. Kovalev N. G., Rabinovich G. Yu., Stepanyuk V. V., Sul’man E. M., Pakshver S. L., Rogov R. V., Sul’man M. G., Mikhaylov I. A., and Perevozchikova S. Yu. Bioconversion of Organic Waste to Fodder Additive and Fertilizer [Sposobbiokonversiiorganicheskikhotkhodov v kormovuyudobavkuiudobreniye]. 2000. RF patent 2151133. Retrieved from http://www.freepatent.ru/patents/2151133
XXII. Lapa V. V., Smeyan N. I., Bogdevich I. M., Chernysh A. F., Rak M. V., and Tsyganov A. R. Handbook for Agrochemists [Spravochnikagrokhimika]. Minsk: Belorusskayanauka, 2007. Retrieved from: http://www.iprbookshop.ru/14339.html
XXIII. Larramendy, M. L., &Soloneski, S. (Eds.). Organic Fertilizers – From Basic Concepts to Applied Outcomes. 2016. doi:10.5772/61454
XXIV. Lhadi, E. K., Tazi, H., Aylaj, M., Tambone, F., and Adani, F. Cocomposting Separated MSW And Poultry Manure in Morocco. Compost Science & Utilization. 2004; 12 (2): 137–144. doi:10.1080/1065657x.2004.10702172
XXV. Naumovich V. M. Turf Resources in Agriculture [Torfyanyyeresursynasluzhbe s\kh]. Moscow: Nedra, 1991. Retrieved from http://e-catalog.nlb.by/vufind/Record/BY-NLB-rr16571050000
XXVI. Nin, Y., Diao, P., Wang, Q., Zhang, Q., Zhao, Z., and Li, Z. On-Farm-Produced Organic Amendments on Maintaining and Enhancing Soil Fertility and Nitrogen Availability in Organic or Low Input Agriculture. Organic Fertilizers – From Basic Concepts to Applied Outcomes. 2016. doi:10.5772/62338
XXVII. Novikov M. N., Khokhlov V. I., and Ryabkov V. V. Poutry Manure As Valuable Organic Fertilizer [Ptichiypomet – tsennoyeorganicheskoyeudobreniye]. Moscow: Rosagropromizdat, 1989. Retrieved from https://www.twirpx.com/file/2076131/
XXVIII. Pavlova L. N., Samogin S. K., Rozenko G. T., Kalinin E. K., Il’mer Ye. I. Production of Turf-Based Organic Mineral Fertilizer [Sposobpolucheniyaorgano-mineral’nogoudobreniyanaosnovetorfa]. 1997. RF patent 2092470. Retrieved fromhttp://www1.fips.ru/fips_servl/fips_servlet?DB=RUPAT&rn=3854&DocNumber=2092470&TypeFile=html
XXIX. Perera, J., Nakhshiniev, B., Gonzales, H., & Yoshikawa, K. Effect of Hydrothermal Treatment on Macro/Micro Nutrients Extraction from Chicken Manure for Liquid Organic Fertilizer Production. British Journal of Environment and Climate Change. 2015; 5(1): 64–75. doi:10.9734/bjecc/2015/15434
XXX. Peterburgskiy A. V. Agrochemistry and Physiology of Plant Nutrition [Agrokhimiyaifiziologiyapitaniyarasteniy]. Second revised edition. Moscow: Rossel’khozizdat, 1981.
XXXI. Rabinovich G. Yu. Bioconversion of Organic Raw Materials [Biokonversiyaorganicheskogosyr’ya]. Thesis for a Doctor of Biological Sciences. Tver, 2000.
XXXII. Rabinovich G. Yu., Kovalev N. G., Fomicheva N. V., and Rabinovich R. M. Solid-Phase Fermenting: Processes, Products, Quality (Guidance Manual) [Protsessyikachestvoproduktovtverdofaznoyfermentatsii (Metodicheskoyeposobiye)]. Moscow-Tver, 2003.
XXXIII. Rabinovich G. Yu. And Tikhomirova D. V. Biofertilizer Production Method [Sposobpolucheniyabioudobreniya]. 2015. RF patent 2539781. Retrieved from http://www.freepatent.ru/patents/2539781
XXXIV. Rabinovich G. Yu., Tikhomirova D. V., Martem’yanova I. A., and Pushkina L. V. Production Method [Sposobpolucheniyabioudobreniya]. 2016. RF patent 2579254. Retrieved from http://www.freepatent.ru/patents/2579254
XXXV. Rabinovich G. Yu. Biotechnological Developments: Scientific Basics, Promotion Experience, Prospects. Monograph. [Nauchnyyeosnovy, opytprodvizheniyaiperspektivybiotekhnologicheskikhrazrabotok: monografiya]. Tver: Tver State University, 2016
XXXVI. Raviv, M., Medina, S., and Shamir, Y. Cocomposting – A Method to Improve Results of Poultry Manure Composting. Compost Science & Utilization. 1999; 7(2): 70–73. doi:10.1080/1065657x.1999.10701966
XXXVII. Schnug, E., Oswald, P., and Haneklaus, S. Organic manure management and efficiency: Role of organic fertilizers and their management practices in Fertilizers and Environment. Developments in Plant and Soil Sciences. 1996; 66: 259-265. doi:10.1007/978-94-009-1586-2_44
XXXVIII. Shivers, T. C. Japanese beetle composting: Converting pests to soil fertilizer using common farm materials. 2016. International Congress of Entomology. doi:10.1603/ice.2016.115094
XXXIX. Tiquia, S. M. Microbial Transformation of Nitrogen During Composting. Microbiology of Composting. 2002. doi:10.1007/978-3-662-08724-4_20
XL. Wagaw, K. Characterization and Utilization of Bioslury from Anaerobic Digester for Fertilizer in Crop Production. Journal of Fertilizers & Pesticides. 2016; 7 (2). doi:10.4172/2471-2728.1000169
XLI. Yes’kov A. I. (Ed.). Theoretical Validation of Agriculture Biologizing Technologies [Teoreticheskoyeobosnovaniyetekhnologiybiologizatsiizemledeliya]. Moscow: RAACS, 2005. Retrieved from http://xn--90ax2c.xn--p1ai/catalog/002293_000049_
XLII. Yu, G., Ran, W., & Shen, Q. Compost Process and Organic Fertilizers Utilization in China in Organic Fertilizers – From Basic Concepts to Applied Outcomes. 2016.doi: 10.5772 / 62324
XLIII. Zvyagintsev D. G. (Ed.). Soil Microbiology and Biochemistry Methods: Study Guide [Metodypochvennoymikrobiologiiibiokhimii: Ucheb.posobiye]. Moscow: MSU Publishers, 1991. Retrieved from http://mexalib.com/view/43157
View | Download