CHAOTIC MODES OF A NON-LINEAR FRACTAL OSCILLATOR

Authors:

Roman I. Parovik,

DOI NO:

https://doi.org/10.26782/jmcms.spl.10/2020.06.00015

Keywords:

Maximal Lyapunov exponents,Wolff algorithm,Gram-Schmidt orthogonalization,chaotic strange attractor,boundary cycle,spectrum of Lyapunov exponents,non-linear fractal oscillator,Gerasimov-Caputo derivative,

Abstract

A non-linear fractal oscillator is a generalization of a classical non-linear oscillator in consideration of the hereditary or the memory effect. The memory effect is a property of a dynamic system in which its current state depends on a finite number of its previous states. Therefore, a non-linear fractal oscillator can be mathematically described using integro-differential equations with difference kernels or fractional order derivatives.   In this paper, a fractal non-linear oscillator has been investigated to identify chaotic oscillatory modes. The quantitative measure of chaotic regimes is the largest (maximal) Lyapunov exponents. For calculating the maximal Lyapunov exponents, the Wolff algorithm based on the Gram-Schmidt orthogonalization procedure has been selected, using both numerical solutions for an initial fractal dynamical system by using variational equations. The Wolff algorithm also makes it possible to plot the spectrum of Lyapunov exponents as a function of control parameters for the initial dynamical system.  It has been shown that some spectra of Lyapunov exponents contain positive values indicating the existence of chaotic modes, which are also confirmed by the corresponding phase trajectories.

Refference:

I. Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M., Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them, P. I: Theory. P. II: Numerical application // Meccanica. 1980. V. 15. p. 9-30.
II. Caputo M. Elasticit`a e dissipazione. Bologna: Zanichelli, 1969. 150 p.
III. Flores-Tlacuahuac A., Biegler L. T. Optimization of fractional order dynamic chemical processing systems // Industrial & Engineering Chemistry Research. 2014. vol. 53. no. 13. 5110-5127.
IV. Gao X., Yu J. Synchronization of two coupled fractional-order chaotic oscillators // Chaos, Solitons& Fractals. 2005. vol. 26. no. 1. pp. 141-145.
V. Gerasimov A.N.Obobshcheniyelineynykhzakonovdeformatsii i ikhprilozheniye k zadachamvnutrennegotreniya[Generalization of linear deformation laws and their application to internal friction problems]. AN SSSR, Prikladnayamatematika i mekhanika Journal, 1948, v. 12, pp. 529–539.
VI. Karthikeyan A., Rajagopal K. FPGA implementation of fractional-order discrete memristor chaotic system and its commensurate and incommensurate synchronisations // Pramana. 2018. vol. 90. no. 1
VII. Kilbas A.A., Srivastava H.M., Trujillo. J.J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006. 523 p.
VIII. Li C. et al. A new chaotic oscillator with free control //Chaos: An Interdisciplinary Journal of Nonlinear Science. 2017. vol. 27. no. 8. pp. 083101.
IX. Mainardi F. Fractional Relaxation-Oscillation and Fractional Diffusion-Wave. Chaos, Soliton& Fractal, 1996, vol. 7(9), pp.1461-1477.
X. Makarov D.V., Parovik R.I. Modeling of the economic cycles using the theory of fractional calculus // Journal of Internet Banking and Commerce. 2016. vol. 21. no S6.
XI. Meilanov R.P., Yanpolov M.S. Features of the phase trajectory of a fractal oscillator // Technical Physics Letters. 2002. vol. 28. no 1. pp. 30-32
XII. Min F., Wang Y., Dou Y. Analysis and Control of Chaotic Oscillation in Fractional-order Power System with Excitation Model // Journal of Electronics & Information Technology. 2017. vol. 8. 030.
XIII. Nasrolahpour H. Fractional Dynamics in Bioscience and Biomedicine and the Physics of Cancer // bioRxiv. 2017. 214197.
XIV. Oldham K. B., Spanier J. The fractional calculus. Theory and applications of differentiation and integration to arbitrary order. London: Academic Press, 1974. 240 p.
XV. Parovik R.I. Explicit finite-difference scheme for the numerical solution of the model equation of nonlinear hereditary oscillator with variable-order fractional derivatives //Archives of Control Sciences. 2016. vol. 26. no 3. pp. 429-435.
XVI. Parovik R.I. МMatematicheskoyemodelirovaniyenelineynykhereditarnykhostsillyatorov [Mathematical Modeling of Non-linear Hereditary Oscillators].Petropavlovsk-Kamchatsky, Vitus Bering KamGU Publ., 2017. 135 p.
XVII. Parovik R.I. Mathematical modeling of nonlocal oscillatory Duffing system with fractal friction // Bulletin KRASEC. Physical and Mathematical Sciences. 2015. vol. 10. no 1. pp. 16-21.
XVIII. Parovik R.I. Ob issledovaniiustoychivostiereditarnogoostsillyatora Van-der-Polya[On research of the van der Pol hereditary oscillator stability].Fundamental’nyyeissledovaniya Journal, 2016. No. 3-2, pp. 283-287.
XIX. Parovik R.I. On a credit oscillatory system with the inclusion of stick-slip // E3S Web of Conferences. 2016. vol. 7. 00018.
XX. Parovik R.I. Postroyeniye kart dinamicheskikhrezhimov i bifurkatsionnykhdiagramm v nelineynoydinamike s pomoshch’yusredykomp’yuternoymatematiki Maple [Plotting dynamic modes and bifurcation diagrams in non-linear dynamics using Maple software for mathematics]. Petropavlovsk-Kamchatsky, Matematika i metodikayeyeprepodavaniya, Sborniknauchno-metodicheskikhstatey, 2015, pp. 110-120.
XXI. Parovik R.I. Sushchestvovaniye i yedinstvennost’ zadachiKoshidlyafraktal’nogonelineynogouravneniyaostsillyatora[Existence and Uniqueness of the Cauchy Problem for the Fractal Non-linear Equation of the Oscillator]. UzbekMathematicalJournal.Существование и единственность задачи Коши для фрактального нелинейного уравнения осциллятора. Uzbekskiy matematicheskiy zhurnal, 2017, No.4, pp. 110-118.
XXII. Petras I. Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation. Beijing and Springer-Verlag Berlin Heidelberg: Springer, 2011. 218 p.
XXIII. Rajagopal K. et al. A chaotic memcapacitor oscillator with two unstable equilibriums and its fractional form with engineering applications // Nonlinear Dynamics. 2018. vol. 91. no. 2. pp. 957-974.
XXIV. Syta A., Litak G., Lenci S., Scheffler M. Chaotic vibrations of the Duffing system with fractional damping//Chaos: An Interdisciplinary Journal of Nonlinear Science. 2014. Т. 24. №1. 013107.
XXV. Tavazoei M. S., Haeri M. Chaotic attractors in incommensurate fractional order systems // Physica D: Nonlinear Phenomena. 2008. Vol. 237, no. 20. P. 2628–2637.
XXVI. Volterra V. Sur les ´equations int´egro-diff´erentiellesetleurs applications // ActaMathematica. 1912. Vol. 35, no. 1. P. 295–356.
XXVII. Wolf A. et al. Determining Lyapunov exponents from a time series // Physica D: Nonlinear Phenomena. 1985. vol. 16. no. 3. pp. 285-317.

View | Download