Authors:
Prabhjot Kaur,Chander Kaur,DOI NO:
https://doi.org/10.26782/jmcms.2024.12.00012Keywords:
CNN Models,Deep Learning,Gabor Technique,Security,Fusion,Abstract
Advancements in multimodal biometrics, which amalgamate multiple biometric traits, hold promise for augmenting the accuracy and robustness of biometric identification systems. The focal point of this innovative study is the enhancement of multimodal biometrics identification, using face and iris images as the key biometric traits. This work taps into the expansive collection of face and iris images present in the WVU-Multimodal dataset for evaluation purposes. Our proposed approach employs “Convolutional Neural Network (CNN)” architectures, notable for their efficacy in computer vision tasks, to extract potent discriminative features from the input images. This work specifically incorporates three popular CNN architectures: ResNet-50, InceptionNet, XceptionNet, and fine-tuned CNN. To amalgamate the extracted features, investigate various fusion techniques in the security-centric industry: early fusion, and score-level fusion. Early fusion is an approach that merges the raw images of both face and iris at the input level to a single CNN model. Use the Gabor approach to enhance the image's quality and make the face and iris information more visible. This technique modifies the histogram equalization process for local regions, thus enabling better visibility and subsequent feature extraction. Our experimental evaluation employs performance metrics like accuracy, “Equal Error Rate”, and “Receiver Operating Characteristic” curves. In this work undertakes a comparative analysis to appraise the performance of the different CNN architectures and fusion techniques under scrutiny.Refference:
I. A. Gutub, N. Al-Juaid, E. Khan: ‘Counting-based secret sharing technique for multimedia applications.’ Multimedia Tools and Applications 78 (2019): 5591-5619.
II. C. Kamlaskar, A. Abhyankar: ‘Multimodal System Framework for Feature Level Fusion based on CCA with SVM Classifier.’ 2020 IEEE-HYDCON. IEEE, 2020.
III. D. Singh, V. Kumar: ‘A comprehensive review of computational dehazing techniques.’ Archives of Computational Methods in Engineering 26.5 (2019): 1395-1413.
IV. F. Cherifi, K. Amroun, M. Omar: ‘Robust multimodal biometric authentication on IoT device through ear shape and arm gesture.’ Multimedia Tools and Applications 80.10 (2021): 14807-14827.
V. F. Wang, J. Han: ‘Robust multimodal biometric authentication integrating iris, face and palmprint.’ Information technology and control 37.4 (2008).
VI. I. Boucherit, M.O. Zmirli, H. Hentabli and B.A. Rosdi: ‘Finger vein identification using deeply-fused Convolutional Neural Network.’ Journal of King Saud University-Computer and Information Sciences 34.3 (2022): 646-656.
VII. J. Lowe: ‘Ocular Motion Classification for Mobile Device Presentation Attack Detection.’ University of Missouri-Kansas City, 2020.
VIII. K. Gunasekaran, J. Raja, R. Pitchai: ‘Deep multimodal biometric recognition using contourlet derivative weighted rank fusion with human face, fingerprint and iris images.’ Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije 60.3 (2019): 253-265.
IX. K.P. Kumar, P.K. Prasad, Y. Suresh, M.R. Babu, M.J. Kumar: ‘Ensemble recognition model with optimal training for multimodal biometric authentication.’ Multimedia Tools and Applications (2024): 1-25.
X. L. Wan, K. Liu, H.A. Mengash., N. Alruwais, M. Al Duhayyim, K. Venkatachalam, : ‘Deep learning-based photoplethysmography biometric authentication for continuous user verification.’ Applied Soft Computing 156 (2024): 111461Darren Williams. : ‘Concrete Strength Prediction from Early-Age Data’. Technical Paper, Honor Project, Technical Paper, University of Adelaide.
XI. L. Wang, X. Meng, D. Li, X. Zhang, S. Ji, S. Guo: ‘DEEPFAKER: a unified evaluation platform for facial deepfake and detection models.’ ACM Transactions on Privacy and Security, 27(1), pp.1-34, 2024.
XII. P. Dhiman, V. Kukreja, A. Kaur: ‘Citrus fruits classification and evaluation using deep convolution neural networks: an input layer resizing approach.’ 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO). IEEE, 2021.
XIII. P. Sivakumar, B.R. Rathnam, S. Divakar, M.A. Teja, R.R. Prasad: ‘A Secure and Compact Multimodal Biometric Authentication Scheme using Deep Hashing.’ 2021 IEEE International Conference on Intelligent Systems, Smart and Green Technologies (ICISSGT). IEEE, 2021.
XIV. P. Xiao: ‘Network Malware Detection Using Deep Learning Network Analysis.’ Journal of Cyber Security and Mobility, pp.27-52, 2024.
XV. P.P. Sarangi, D.R. Nayak, M. Panda, B. Majhi : ‘A feature-level fusion based improved multimodal biometric recognition system using ear and profile face.’ Journal of Ambient Intelligence and Humanized Computing 13.4 (2022): 1867-1898.
XVI. P.P. Sarangi, D.R. Nayak, M. Panda, B. Majhi: ‘A feature-level fusion based improved multimodal biometric recognition system using ear and profile face.’ Journal of Ambient Intelligence and Humanized Computing 13.4 (2022): 1867-1898.
XVII. P.S. Chanukya, T. K. Thivakaran.: ‘Multimodal biometric cryptosystem for human authentication using fingerprint and ear.’ Multimedia Tools and Applications 79.1 (2020): 659-673.
XVIII. Q. Jiang, G. Zhao, X. Ma, M. Li, Y. Tian, X. Li, : ‘Cross-modal Learning based Flexible Bimodal Biometric Authentication with Template Protection.’ IEEE Transactions on Information Forensics and Security (2024).
XIX. R. Deshmukh,P. Yannawar: ‘Deep learning based person authentication system using fingerprint and brain wave.’ International Journal of Computing and Digital Systems 15.1 (2024): 723-739.
XX. R. Ryu, S. Yeom, S.H. Kim, D. Herbert.: ‘Continuous multimodal biometric authentication schemes: a systematic review.’ IEEE Access 9 (2021): 34541-34557.
XXI. R.A. Ramirez-Mendoza, J.D. Lozoya-Santos, R. Zavala-Yoé, L.M. Alonso-Valerdi, R. Morales-Menendez, B. Carrión, P.P. Cruz, H.G. Gonzalez-Hernandez: ‘Biometry: Technology, Trends and Applications.’ CRC Press; 2022 Jul 7.
XXII. R.O. Mahmoud, M. M. Selim, O.A. Muhi: ‘Fusion time reduction of a feature level based multimodal biometric authentication system.’ International Journal of Sociotechnology and Knowledge Development (IJSKD) 12.1 (2020): 67-83.
XXIII. S. Aleem, P. Yang, S. Masood, P. Li, B. Sheng: ‘An accurate multi-modal biometric identification system for person identification via fusion of face and finger print.’ World Wide Web 23.2 (2020): 1299-1317.
XXIV. S. Balaji, U. Rahamathunnisa: ‘Multimodal Biometrics Authentication in Healthcare Using Improved Convolution Deep Learning Model.’ INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS 32.03 (2023): 2340013.
XXV. S. Pahuja, N. Goel: ‘State-of-the-Art Multi-trait Based Biometric Systems: Advantages and Drawbacks.’ International Conference on Emerging Technologies in Computer Engineering. Cham: Springer International Publishing, 2022.
XXVI. S. Salturk, N. Kahraman: ‘Deep learning-powered multimodal biometric authentication: integrating dynamic signatures and facial data for enhanced online security.’ Neural Computing and Applications (2024): 1-12.
XXVII. T. Gernot, C. Rosenberger: ‘Robust biometric scheme against replay attacks using one-time biometric templates.’ Computers & Security 137 (2024): 103586.
XXVIII. U. Sumalatha, K.K. Prakasha, S. Prabhu, V.C. Nayak: ‘A Comprehensive Review of Unimodal and Multimodal Fingerprint Biometric Authentication Systems: Fusion, Attacks, and Template Protection.’ IEEE Access (2024).
XXIX. V. Talreja, C. V. Matthew, M.N. Nasser: ‘Multibiometric secure system based on deep learning.’ 2017 IEEE Global conference on signal and information processing
XXX. WVU Multimodal Dataset. Accessed: Jan. 28, 2018. [Online]. Available: http://biic.wvu.edu/
XXXI. X. Zhang, D. Cheng, P. Jia, Y. Dai, X. Xu: ‘An efficient android-based multimodal biometric authentication system with face and voice.’ IEEE Access 8 (2020): 102757-102772.
XXXII. X. Zhang, L. Yao, C. Huang, T. Gu, Z. Yang, Y. Liu: ‘DeepKey: A multimodal biometric authentication system via deep decoding gaits and brainwaves.’ ACM Transactions on Intelligent Systems and Technology (TIST) 11.4 (2020): 1-24.
XXXIII. Y. Xu, A. Zhong, J. Yang, D. Zhang: ‘Bimodal biometrics based on a representation and recognition approach.’ Optical Engineering 50.3 (2011): 037202-037202.
XXXIV. Y. Yin, S. He, R. Zhang, H. Chang, X. Han, J. Zhang: ‘Deep learning for iris recognition: a review.’ arXiv preprint arXiv:2303.08514 (2023).
XXXV. Z. Boulkenafet, J. Komulainen, A. Hadid: ‘Face spoofing detection using colour texture analysis.’ IEEE Transactions on Information Forensics and Security 11.8 (2016): 1818-1830.