THE TIME-FRACTIONAL PERTURBED NONLINEAR SCHRÖDINGER EQUATION WITH BETA DERIVATIVE

Authors:

Md. Al Amin,M. Ali Akbar,M. Ashrafuzzaman Khan,

DOI NO:

https://doi.org/10.26782/jmcms.2024.05.00007

Keywords:

Beta Derivative,Extended Riccati Equation method,Optical Solitons,Time-fractional Perturbed Nonlinear Schrödinger Equation,Traveling Wave Transformation,

Abstract

In this article, we extract the diverse solitary wave solutions to the time-fractional perturbed nonlinear Schrödinger equation describing the dynamics of optical solitons travelling through nonlinear optical fibers. The nonlinear fractional differential equation is transformed into a nonlinear differential equation using a traveling wave transformation relating to the beta derivative. After that, the resulting equation is explained using the extended Riccati equation method. Abundant soliton and soliton-type solutions are extracted, comprising trigonometric and hyperbolic functions. The nature of the solutions varies qualitatively depending on distinct parameters. Additionally, graphical representations of the constructed solutions exhibit various physical forms, including kink, bell-shaped, periodic, anti-coupon etc. Moreover, the achieved solutions play a significant role in interpreting wave propagation studies and are essential for validating numerical and experimental findings in the fields of nonlinear optics, quantum mechanics, engineering, etc.

Refference:

I. Akbar, M. A., & Khatun, M. M. (2023). Optical soliton solutions to the space–time fractional perturbed Schrödinger equation in communication engineering. Optical and Quantum Electronics, 55(7), 645. 10.1007/s11082-023-04911-9
II. Ali, A., Ahmad, J., & Javed, S. (2023). Solitary wave solutions for the originating waves that propagate of the fractional Wazwaz-Benjamin-Bona-Mahony system. Alexandria Engineering Journal, 69, 121-133. 10.1016/j.aej.2023.01.063
III. Atangana, A., & Alqahtani, R. T. (2016). Modelling the spread of river blindness disease via the Caputo fractional derivative and the beta-derivative. Entropy, 18(2), 40. 10.3390/e18020040
IV. Atangana, A., Baleanu, D., & Alsaedi, A. (2016). Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal. Open Physics, 14(1), 145-149. 10.1515/phys-2016-0010
V. Beghami, W., Maayah, B., Bushnaq, S., & Abu Arqub, O. (2022). The Laplace optimized decomposition method for solving systems of partial differential equations of fractional order. International Journal of Applied and Computational Mathematics, 8(2), 52. 10.1007/s40819-022-01256-x
VI. Bekir, A., Aksoy, E., & Cevikel, A. C. (2015). Exact solutions of nonlinear time fractional partial differential equations by sub‐equation method. Mathematical Methods in the Applied Sciences, 38(13), 2779-2784. 10.1002/mma.3260
VII. Bekir, A., Guner, O., & Cevikel, A. (2016). The exp-function method for some time-fractional differential equations. IEEE/CAA Journal of Automatica Sinica, 4(2), 315-321. 10.1109/JAS.2016.7510172
VIII. Bilal, M., & Ren, J. (2022). Dynamics of exact solitary wave solutions to the conformable time-space fractional model with reliable analytical approaches. Optical and Quantum Electronics, 54, 1-19. 10.1007/s11082-021-03408-7
IX. Bilal, M., Ren, J., Inc, M., & Alhefthi, R. K. (2023). Optical soliton and other solutions to the nonlinear dynamical system via two efficient analytical mathematical schemes. Optical and Quantum Electronics, 55(11), 938. 10.1007/s11082-023-05103-1
X. Chen, W., Sun, H., & Li, X. (2022). Fractional derivative modeling in mechanics and engineering. Beijing, China: Springer.
XI. Esra Köse, G., Oruç, Ö., & Esen, A. (2022). An application of Chebyshev wavelet method for the nonlinear time fractional Schrödinger equation. Mathematical Methods in the Applied Sciences, 45(11), 6635-6649. 10.1002/mma.8196
XII. Islam, T., Akbar, M. A., & Azad, A. K. (2018). Traveling wave solutions to some nonlinear fractional partial differential equations through the rational (G′/G)-expansion method. Journal of Ocean Engineering and Science, 3(1), 76-81. 10.1016/j.joes.2017.12.003
XIII. Islam, M. T., Akter, M. A., Gómez-Aguilar, J. F., & Akbar, M. A. (2022). Novel and diverse soliton constructions for nonlinear space–time fractional modified Camassa–Holm equation and Schrodinger equation. Optical and Quantum Electronics, 54(4), 227. 10.1007/s11082-022-03602-1

XIV. Khater, M. M., Attia, R. A., & Lu, D. (2018). Modified auxiliary equation method versus three nonlinear fractional biological models in present explicit wave solutions. Mathematical and Computational Applications, 24(1), 1. 10.3390/mca24010001
XV. Kudryashov, N. A., & Biswas, A. (2022). Optical solitons of nonlinear Schrödinger’s equation with arbitrary dual-power law parameters. Optik, 252, 168497. 10.1016/j.ijleo.2021.168497
XVI. Laskin, N. (2002). Fractional Schrödinger equation. Physical Review E, 66(5), 056108. 10.1103/PhysRevE.66.056108
XVII. Lu, D., Wang, J., Arshad, M., & Ali, A. (2017). Fractional reduced differential transform method for space-time fractional order heat-like and wave-like partial differential equations. Journal of Advanced Physics, 6(4), 598-607. 10.1166/jap.2017.1383
XVIII. Odabasi, M., & Misirli, E. (2018). On the solutions of the nonlinear fractional differential equations via the modified trial equation method. Mathematical Methods in the Applied Sciences, 41(3), 904-911. 10.1002/mma.3533
XIX. Okposo, N. I., Veeresha, P., & Okposo, E. N. (2022). Solutions for time-fractional coupled nonlinear Schrödinger equations arising in optical solitons. Chinese Journal of Physics, 77, 965-984. 10.1016/j.cjph.2021.10.014
XX. Owyed, S., Abdou, M. A., Abdel-Aty, A., & Dutta, H. (2020). Optical solitons solutions for perturbed time fractional nonlinear Schrodinger equation via two strategic algorithms. Aims Math, 5(3), 2057-2070. 10.3934/math.2020136
XXI. Riaz, M. B., Atangana, A., Jahngeer, A., Jarad, F., & Awrejcewicz, J. (2022). New optical solitons of fractional nonlinear Schrodinger equation with the oscillating nonlinear coefficient: A comparative study. Results in Physics, 37, 105471. 10.1016/j.rinp.2022.105471
XXII. Rizvi, S. T. R., Seadawy, A. R., Younis, M., Ahmad, N., & Zaman, S. (2021). Optical dromions for perturbed fractional nonlinear Schrödinger equation with conformable derivatives. Optical and Quantum Electronics, 53(8), 477. 10.1007/s11082-021-03126-0
XXIII. Sarwar, A., Gang, T., Arshad, M., Ahmed, I., & Ahmad, M. O. (2023). Abundant solitary wave solutions for space-time fractional unstable nonlinear Schrödinger equations and their applications. Ain Shams Engineering Journal, 14(2), 101839. 10.1016/j.asej.2022.101839
XXIV. Valentim, C. A., Rabi, J. A., & David, S. A. (2021). Fractional mathematical oncology: On the potential of non-integer order calculus applied to interdisciplinary models. Biosystems, 204, 104377. 10.1016/j.biosystems.2021.104377
XXV. Wang, F., Salama, S. A., & Khater, M. M. (2022). Optical wave solutions of perturbed time-fractional nonlinear Schrödinger equation. Journal of Ocean Engineering and Science. 10.1016/j.joes.2022.03.014
XXVI. Wazwaz, A. M. (2022). Bright and dark optical solitons of the (2+ 1)-dimensional perturbed nonlinear Schrödinger equation in nonlinear optical fibers. Optik, 251, 168334. 10.1016/j.ijleo.2021.168334
XXVII. Younis, M., ur Rehman, H., Rizvi, S. T. R., & Mahmood, S. A. (2017). Dark and singular optical solitons perturbation with fractional temporal evolution. Superlattices and Microstructures, 104, 525-531. 10.1016/j.spmi.2017.03.006
XXVIII. Zaman, U. H. M., Arefin, M. A., Akbar, M. A., & Uddin, M. H. (2023). Utilizing the extended tanh-function technique to scrutinize fractional order nonlinear partial differential equations. Partial Differential Equations in Applied Mathematics, 8, 100563. 10.1016/j.padiff.2023.100563
XXIX. Zhu, S. D. (2008). The generalizing Riccati equation mapping method in non-linear evolution equation: application to (2+1)-dimensional Boiti-Leon-Pempinelle equation. Chaos, Solitons & Fractals, 37(5), 1335-1342. 10.1016/j.chaos.2006.10.015

View Download