THE INFLUENCE OF MOMENTUM AND CONCENTRATION SLIP BOUNDARY CONDITIONS ON A FERROMAGNETIC DIPOLE WITH RADIATION, THERMOPHORESIS, AND BROWNIAN MOTION

Authors:

Nagagopiraju Vullam,Jupudi Lakshmi Rama Prasad,M. Aruna Kumari,Ramesh Adireddy,Y. Subba Rao,U. S. B. K. Mahalaxmi,R. Anil Kumar,G. Dharmaiah,Desamala Prabhakar Rao,Sarala Patchala,

DOI NO:

https://doi.org/10.26782/jmcms.2025.02.00011

Keywords:

Thermo-phoresis,Brownian motion,Magnetic dipole,Radiation,

Abstract

A magnetic dipole effects nonlinear thermal radiation from ferromagnetic liquid when stretched provinces are analyzed numerically utilizing various parameters pertinent to the problem. Ferrofluid will undergo a phase shift and become magnetic when it is in a magnetic field. This technique is useful in various fields, including electronics, loudspeakers, and materials research. This research aimed to gain further knowledge about the one-of-a-kind continual flow of ferrofluids via permeable medium, including Brownian and thermophoresis influences. Ordinary differential equations may be generated using the appropriate similarity transformation. After that, the equations are solved by using the approach known as bvp4c. Calculations are carried out to obtain the results of physical parameters with non-dimension quantities. The effects of velocity, temperature, and concentration, as well as the applications of these factors, are shown graphically. The velocity is affected in various ways by two factors, namely, the ferromagnetic parameter and the distance. The concentration is increased due to both the thermophoretic and Brownian variables. The frictional force rises as the ferromagnetic and Brownian motion parameters increase, yet the Sherwood and Nusselt numbers decrease throughout this process.

Refference:

I. Asadi, A.H. Nezhad, F. Sarhaddi, T. Keykha, “Laminar ferrofluid heat transfer in presence of non-uniform magnetic field in a channel with sinusoidal wall: a numerical study”, J. Magn. Magn. Mater. 471 (2019) 56–63. 10.1016/j.aej.2022.12.031
II. Dhanke, Jyoti Atul, K. Thanesh Kumar, Pudhari Srilatha, Kurapati Swarnalatha, P. Satish, and S. Abdul Gaffar. “Magnetohydrodynamic radiative simulations of eyring–powell micropolar fluid from an isothermal cone.” International Journal of Applied and Computational Mathematics 8, no. 5 (2022): 232. 10.1007/s40819-022-01436-9
III. G. Dharmaiah, W. Sridhar, K. AL‐Farhany, K. Balamurugan, F. “Ali, Non‐Newtonian nanofluid characteristics over a melting wedge: A numerical study”, Heat Transfer 51(5) (2022) 4620-4640. 10.1002/htj.22515
IV. H.I. Andersson, O.A. Valnes, Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole, Acta Mech. 128(1) (1998) 39–47. 10.1007/bf01463158
V. K. Rafique, M.I. Anwar, M. Misiran, I. Khan, A.H. Seikh, E.-S.M. Sherif, K.S. Nisar, Brownian motion and thermophoretic diffusion consequences on micropolar type nanofluid flow with Soret and Dufour impacts over an inclined sheet: Keller-box Simulations, Energies 12 (2019) 4191. 10.3390/en12214191
VI. Kotha Gangadhar, Aruna Kumari, etc “Magnetization for Burgers’ Fluid Subject to Convective Heating and Heterogeneous-Homogeneous Reactions” Mathematic Problem in Engineering, Febuary 2022:1- 1. 10.1155/2022/2747676
VII. M. Astanina, M. Sheremet, H. Oztop, N. Abu-Hamdeh, MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium, Int. J. Mech. Sci. 136 (2018) 493–502. 10.1016/j.ijmecsci.2018.01.001
VIII. N. Gibanov, M. Sheremet, H. Oztop, MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid, J. Magn. Magn. Mater. 452 (2018) 193–204. 10.1016/j.jmmm.2017.12.075
IX. N.A.A.M. Nasir, T. Sajid, W. Jamshed, G.C. Altamirano, M.R. Eid, F.A.A. ElSeabee, Cubic Chemical Autocatalysis and Oblique Magneto Dipole Effectiveness on Cross Nanofluid Flow via a Symmetric Stretchable Wedge, Symmetry 15(6) (2023) 1145. 10.3390/sym15061145
X. N. Vedavathi, V.S. Sajja, etc.. “Metallic nano particle effect on unsteady convective MHD flow of radiation with rotating frame of reference: A theoretical study” , AIP Conference Proceedings, AIP Publishing LLC, 2021, p. 020033. 10.1063/5.0067493
XI. G. Dharmaiah, S. Dinarvand, K. Balamurugan, “MHD radiative ohmic heating nanofluid flow of a stretching penetrable wedge: A numerical analysis”, Heat Transf. 51(5) (2022) 4522-4543. 10.1002/htj.22511
XII. N. Vedavathi, G. Dharmaiah, K. Venkatadri, S.A. Gaffar, Numerical study of radiative non-Darcy nanofluid flow over a stretching sheet with a convective Nield conditions and energy activation, Nonlinear Eng. 10(1) (2021) 159-176. 10.1515/nleng-2021-0012
XIII. P. Durgaprasad, S.V.K. Varma, M.M. Hoque, C.S.K. Raju, Combined consequences of Brownian motion and thermophoresis parameters on three-dimensional (3D) Casson nanofluid flow across the porous layers slendering sheet in a suspension of graphene nanoparticles. Neural Comput. Appl. 31 (2018) 6275–6286. 10.1007/s00521-018-3451
XIV. N. Abbas, W. Shatanawi, T.A. Shatnawi, F. Hasan, Theoretical analysis of induced MHD Sutterby fluid flow with variable thermal conductivity and thermal slip over a stretching cylinder, AIMS Math. 8(5) (2023) 10146-10159. 10.3934/math.2023513
XV. Parige, Leela Santi, Deevi Sateesh Kumar, and Gudala Balaji Prakash. “Significance of Joule Heating and Fourier Heat Flux on the Dynamics of Ternary Hybrid Nanofluid Rotating in a Circular Porous Disk.” International Journal of Heat & Technology 42, no. 5 (2024). 10.18280/ijht.420532
XVI. Raju, T. Linga, and P. Satish. “Hall and rotation effects on magnetohydrodynamics two fluids slip flow of ionized gases via parallel conduit.” Heat Transfer 52, no. 7 (2023): 4829-4856. 10.1002/htj.22909
XVII. S. M. Hussain, W. Jamshed, A comparative entropy-based analysis of tangent hyperbolic hybrid nanofluid flow: Implementing finite difference method, International Communications in Heat and Mass Transfer, vol. 129, pp. 105671, 2021 10.1016/j.icheatmasstransfer.2021.10567
XVIII. Y. Lin, Y. Jiang, Consequences of Brownian motion and thermophoresis on nanofluids in a rotating circular groove: A numerical simulation, Int. J. Heat Mass Transf. 123 (2018) 569 582. 10.1016/j.ijheatmasstransfer.2018.02.103
XIX. W. Jamshed, S. U. Devi S, M. Goodarzi, M. Prakash, K. S. Nisar, M. Zakarya and A. H. Abdel-Aty, Evaluating the unsteady Casson nanofluid over a stretching sheet with solar thermal radiation: An optimal case study, Case Studies in Thermal Engineering, vol. 26, pp. 101160, 2021. 10.1016/j.csite.2021.101160
XX. W. Jamshed, K. S. Nisar, R. W. Ibrahim, T. Mukhtar, V. Vijayakumar and F. Ahmad, Computational frame work of Cattaneo-Christov heat flux effects on Engine Oil based Williamson hybrid nanofluids: A thermal case study, Case Studies in Thermal Engineering, vol. 26, pp. 101179, 2021. 10.1016/j.csite.2021.101179

View Download