Synthesis and Characterization of PMMA Nanofibers for Filtration of Drinking Water

Authors:

Bilal Ahmad,Ameer Hamza,Sheeraz Ahmed,Zeeshan Najam,Atif Ishtiaq,

DOI NO:

https://doi.org/10.26782/jmcms.2019.08.00009

Keywords:

Electrospinning,Fiber diameter,FTIR,SEM,Water filtration,

Abstract

Currently, hundreds of consumer products in cludelarge-scale nanoparticles; this enhances the possibility of such particles to be released into water and in result causesenvironmental and human health issues. In this research, asynthesis of PolyMethylMethAcrylate (PMMA) nano-membrane for the filtration of nanoparticles from natural water is demonstrated. Electrospinning technique is deployed for the synthesis of PMMA nanofibers. The synthesized nanofibers are further optimized by adding Di-Methyl Formamide (DMF) and acetone that provides elasticity and increases the exterior area of the nano-membranes. The resultant membrane is tendbal and instinctivelyrobust enough to resist filtration under high stress. The synthesized nanofibers are further analyzed and characterized by using spectroscopy (UV-Vis), Fourier Transform Infra-Red spectroscopy (FTIR) and Scanning Electron Microscope(SEM).The SEM, UV-vis and FTIR result shows the filtration rate of the fabricated membrane could capably exclude nanoparticles with different sizes (from 10 to 100 nm in diameter) from a feed solution.

Refference:

I. A.Jena and K.Gupta (2005) “Pore volume of nanofiber nonwovens,”
International Nonwovens Journal, vol. 14, pp. 25–30.
II. Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by
electrospinning of polymers. ProgPolymSci 38(6):963–99.
III. Brandrup, J.Immergut, E.H.; Grulke, E.A. Eds. (1999), Polymer Handbook,
4th ed., Wiley: New York, II,3.
IV. C.J.Luo, S. D.Stoyanov, E.Stride, E.Pelan, and M.Edirisinghe, (2012)
“Electrospinning versus fibre production methods: from specifics to
technological convergence,” Chemical Society Reviews, vol. 41, no. 13, pp.
4708–4735.
V. DhineshSugumaran and KhairilJuhanniAbd Karim (2018, April)* Removal
of copper (II) ion using chitosan-graft-poly(methyl methacrylate) as
adsorbent.
VI. D.Aussawasathien, C.Teerawattananon, and A.Vongachariya,(2008)
“Separation of micron to sub-micron particles from water: electrospun nylon-
6 nanofibrous membranes as pre-filters,” Journal of Membrane Science, vol.
315, no. 1-2, pp. 11–19.
VII. Deitzel JM, Kleinmeyer J, Hirvonen JK, BeckTNC.(2001) Controlled
deposition of electrospun poly(ethylene oxide) fibers. Polymer;42:8163–70

VIII. Feng L, Li S, Li H, Zhai J, Song Y, Jiang L, et al. (2002) SuperHydrophobic
Surface of Aligned Polyacrylonitrile Nanofibers. AngewChemInt
Ed;41(7):1221–3.
IX. Fong H, Reneker DH. Electrospinning and formation of nanofibers. In: Salem
DR, editor. Structure formation in polymeric fibers. Munich: Hanser; 2001. p.
225.
X. Hohman MM, Shin M, Rutledge G, Brenner MP (2001) Electrospinning and
electrically forced jets. I. Stability theory. Phys Fluids 13:2201.
XI. Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on
polymer nanofibers by electrospinning and their applications in
nanocomposites. Compos SciTechnol 63(15): 2223–2253.
XII. J.Lin, B.Ding, J.Yang, J.Yu, and S.S.Al-Deyab, (2012) “Mechanical robust
and thermal tolerant nanofibrous membrane for nanoparticles removal from
aqueous solution,” Materials Letters, vol. 69, pp. 82–85.
XIII. K.Yoon, B. S.Hsiao, and B.Chu, (2008)) “Functional nanofibers for
environmental applications,” Journal of Materials Chemistry, vol. 18, no. 44,
pp. 5326–5334.
XIV. Liu GJ, Ding JF, Qiao LJ, Guo A, Dymov BP, Gleeson JT, et al. (1999)
Polystyrene-block-poly (2-cinnamoylethyl methacrylate) nanofibers-
Preparation, characterization, and liquid crystalline properties. Chem-A
European; 5:2740–9.
XV. LuLiuab,YinanWangab,StephenCraikc,WendellJamesc,ZengquanShuc,RavinNa
rainb,YangLiua, 1 September 2019, “Removal of Cryptosporidium surrogates
in drinking water direct filtration” Volume 181, Pages 499-505.
XVI. Ma PX, Zhang R. (1999) Synthetic nano-scale fibrous extracellular matrix. J
Biomed Mat Res; 46:60–72.
XVII. Martin CR. (1996) Membrane-based synthesis of nanomaterials. Chem
Mater; 8:1739–46.
XVIII. MatthiasMunza, SaschaE.Oswalda, RobinSchäfferlinga, Hermann-
JosefLensingb, (21 June 2019) “Temperature-dependent redox zonation,
nitrate removal and attenuation of organic micropollutants during bank
filtration”.
XIX. Mirko Faccini, Guadalupe Borja, Marcel Boerrigter, Diego Morillo Martín et
al. (2015) “Electrospun Carbon Nanofiber Membranes for Filtration of
Nanoparticles from Water” , Journal of Nanomaterials.
XX. NikiweKunjuzwa, LebeaNathnael Nthunya, Edward NdumisoNxumalo, Sabe
loDaltonMhlanga , (2019) “ The use of nanomaterials in the synthesis of
nanofiber membranes and their application in water treatment” Chapter
5, Pages 101-125.
XXI. Odian, G. (1981), Principles of Polymerization, 2nd ed., Wiley: New York,
196.

XXII. Persano L, Camposeo A, Tekmen C, Pisignano D (2013) Industrial upscaling
of electrospinning and applications of polymer nanofibers: a review.
Macromol Mater Eng 298(5):504–520.
XXIII. P. I. Dolez, N. Bodila, J. Lara, and G. Truchon, (2010) “Personal protective
equipment against nanoparticles,” International Journal of Nanotechnology,
vol. 7, no. 1, pp. 99–117.
XXIV. Piperno S, Lozzi L, Rastelli R, Passacantando M, Santucci S (2006) PMMA
nanofibers production by electrospinning. Appl Surf Sci 252(15):5583–5586.
XXV. Qian Y, Su Y, Li X, Wang H, He C (2010) Electrospinning of polymethyl
methacrylate nanofibres in different solvents. Iran Polym J 19(2):123.
XXVI. R. Brayner, (2008) “The toxicological impact of nanoparticles,” Nano Today,
vol. 3, no. 1-2, pp. 48–55.
XXVII. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers.
Polymer 49(10):2387–2425.
XXVIII. R.S.Barhate and S.Ramakrishna, (2007) “Nanofibrous filtering media:
filtration problems and solutions from tiny materials,” Journal of Membrane
Science, vol. 296, no. 1-2, pp. 1–8.
XXIX. SharafatAlia, IzazAliShaha, AzizAhmada, JavedNawabc, HaiouHuangab, (10
March 2019) “Ar/O2 plasma treatment of carbon nanotube membranes for
enhanced removal of zinc from water and wastewater: A dynamic sorptionfiltration
process”Volume 655, Pages 1270-1278.
XXX. Thompson C,ChaseG,Yarin A, Reneker D (2007) Effects of parameters on
nanofiber diameter determined from electrospinning model. Polymer
48(23):6913–6922.
XXXI. Vakili, M.Rafatullah, M.Salamatinia, B.Abdullah, A. Z., Ibrahim, M. H.,
Tan, K. B., Amouzgar, P. (2014). Application of chitosan and its derivatives
as adsorbents for dye removal from water and wastewater: a review.
Carbohydrate Polymer, 113, 115-130.
XXXII. V.L.Colvin, (2003) “The potential environmental impact of engineered
nanomaterials,” Nature Biotechnology, vol. 21, no. 10, pp. 1166–1170.
XXXIII. Whitesides GM, Grzybowski B. (2002) “ Self-assembly at all scales”.
Science;295:2418–21.
XXXIV. XiaohuiNia Wanli Chenga, SiqiHuanb, DongWanga, GuangpingHana, (15
February 2019) ” Electrospun cellulose nanocrystals/poly(methyl
methacrylate) composite nanofibers: Morphology, thermal and mechanical
properties” Volume 206, Pages 29-37.

View Download