REGULAR PARTIAL DOMATIC NUMBER ON ANTI FUZZY GRAPHS

Authors:

Rengasamy Muthuraj,Palanisamy Vijayalakshmi,Anandaraman Sasireka,

DOI NO:

https://doi.org/10.26782/jmcms.2024.11.00014

Keywords:

Anti fuzzy graph,Dominating set,Domatic number,Vertex degree,

Abstract

AG = (N, A, σ, μ) be a anti fuzzy graph. A partition of N(AG) Π = {D1, D2, …., Dk} is a regular anti fuzzy partial domatic partition of AG if (i) for each Di, < Di > is an anti fuzzy regular and (ii) Di is an anti fuzzy dominating set of GA. The maximum fuzzy cardinality of a regular anti fuzzy partial domatic partition of AG is called the regular anti fuzzy partial domatic number [RAPDN]of AG and it is denoted by  Also these numbers are determined for various anti fuzzy graph. In this work, random r- regular anti fuzzy graph, regular partial domatic number in anti fuzzy graphs, regular partial anti domatic number in anti fuzzy graphs are introduced. Some bounds for anti fuzzy domatic numbers are discussed.

Refference:

I. Akram, Muhammad. “Anti fuzzy structures on graphs.” Middle East Journal of Scientific Research 11.12 (2012): 1641-1648. 10.5829/idosi.mejsr.2012.11.12.131012

II. Allan, Robert B., and Renu Laskar. “On domination and independent domination numbers of a graph.” Discrete mathematics 23.2 (1978): 73-76. 10.1016/0012-365X(78)90105-X
III. Chang, Gerald J. “The domatic number problem.” Discrete Mathematics 125.1-3 (1994): 115-122. 10.1016/0012-365X(94)90151-1
IV. Cockayne, Ernest J., and Stephen T. Hedetniemi. “Towards a theory of domination in graphs.” Networks 7.3 (1977): 247-261. 10.1002/net.3230070305
V. Dharmalingam, K.M., and Valli, K., “Regular Domatic Partition in Fuzzy Graph.” World Journal of Engineering Research and Technology, 5.5 (2019), 100-107.b http://wjert.org/admin/assets/article_issue/34082019/1567157413.pdf
VI. Gani, A. Nagoor, and K. Prasanna Devi. “2-domination in fuzzy graphs.” International Journal of Fuzzy Mathematical Archive 9.1 (2015): 119-124. http://www.researchmathsci.org/IJFMAart/IJFMA-V9n1-14.pdf
VII. Haynes, Teresa W., Stephen Hedetniemi, and Peter Slater. Fundamentals of domination in graphs. CRC press, 2013. 10.1201/9781482246582
VIII. Muthuraj, R., and A. Sasireka. “Domination on anti fuzzy graph.” International Journal of Mathematical Archive 9.5 (2018): 82-92. https://sadakath.ac.in/naac/criterion_iii/research/maths_supportingdocuments.pdf
IX. Muthuraj, R., and A. Sasireka. “Total domination on anti fuzzy graph.” New Trends in Mathematical Sciences 6.4 (2018): 28-39. 10.20852/ntmsci.2018.312
X. Muthuraj, R.,Vijayalakshmi, P., and Sasireka, A., “Domatic Number On Anti Fuzzy Graph. ” AIPCP. [ Accepted]
XI. Muthuraj, R., and A. Sasireka. “On anti fuzzy graph.” Advances in Fuzzy Mathematics 12.5 (2017): 1123-1135. https://www.ripublication.com/afm17/afmv12n5_06.pdf
XII. Somasundaram, A., and S. Somasundaram. “Domination in fuzzy graphs–I.” Pattern recognition letters 19.9 (1998): 787-791. 10.1016/S0167-
8655(98)00064-6
XIII. Zadeh, Lotfi Asker, George J. Klir, and Bo Yuan. Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers. Vol. 6. World scientific, 1996.
https://books.google.co.in/books/about/Fuzzy_Sets_Fuzzy_Logic_and_Fuzzy_Systems.html?id=wu0dMiIHwJkC
XIV. Zelinka, Bohdan. “Antidomatic number of a graph.” Archivum Mathematicum 33.2 (1997): 191-195. https://dml.cz/bitstream/handle/10338.dmlcz/107610/ArchMathRetro_033-1997-2_2.pdf

View Download