RC FRAME RESISTANCE TO PROGRESSIVE COLLAPSE CONSIDERING CRACK OPENING EFFECTS

Authors:

Sergei Y. Savin,Le Vo Phu Toan,Manonkhodja Sharipov,

DOI NO:

https://doi.org/10.26782/jmcms.2024.07.00007

Keywords:

Crack,Failure,Frame,Finite Element Method,Modelling,Moment,Reinforced Concrete,Rotation,

Abstract

In this paper, an approach is developed to account for the effect of discrete cracks on the response of reinforced concrete building frames under a column failure scenario. The approach implies the introduction of traditional finite element models of discrete ties that take into account the relationship between moments and rotations, considering the specifics of the performance of materials, sections, and structures under conditions of redistribution of forces as a result of initial local failure in the structural system of a building. Validation of the proposed approach is performed on the experimental data. Also, it is compared with the modeling results of the existing approaches. The effect of discrete cracking on the deformed state of reinforced concrete building frames under the scenario of column failure is established. The discrete cracks practically did not affect the values of axial forces in the elements. However, for bending moments within the proposed method, a decrease was observed in comparison with the traditional approach. The analysis of the diagrams shows that for reinforced concrete frames with 3 and 5 stories, there is an excess of tensile axial forces in the beam over the values according to the traditional calculation method.

Refference:

I. Adam, J. M., Parisi, F., Sagaseta, J., Lu, X., : ‘Research and practice on progressive collapse and robustness of building structures in the 21st century’. Engineering Structures. Vol. 173, pp. 122-149, 2018. 10.1016/j.engstruct.2018.06.082.
II. Adam J.M., Buitrago M., Bertolesi E., Sagaseta J., Moragues J. J., : ‘Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario’. Engineering Structures. Vol. 210, pp. 1-14, 2020.
III. Alanani, M., Ehab, M., Salem, H., : ‘Progressive Collapse Assessment of Precast Prestressed Reinforced Concrete Beams Using Applied Element Method’. Case Studies in Construction Materials. Vol. 13, e00457, 2020. 10.1016/j.cscm.2020.e00457.
IV. Almusallam, T., Al-Salloum, Y., Elsanadedy, H., Tuan, N., Mendis, P., Abbas, H., : ‘Development limitations of compressive arch and catenary actions in reinforced concrete special moment resisting frames under column-loss scenarios’. Structure and Infrastructure Engineering. Vol. 16(12), pp. 1616-1634, 2020. 10.1080/15732479.2020.1719166.
V. Almazov V. O., Plotnikov A. I., : ‘Rastorguyev B.S. Problems of buildings resistance to progressive collapse’. Vestnik MGSU. Vol. 2(1), pp. 16–20, 2011.
VI. Belostotsky, A. M., & Pavlov, A. S., : ‘Long span buildings analysis under physical, geometric and structural nonlinearities consideration’. Int. J. Comput. Civ. Struct. Eng. Vol. 6(1), pp. 80, 2010.
VII. Bondarenko V.M., Kolchunov V.I., : ‘Calculation models evaluating reinforced concrete force resistance’. Moscow: Publishing ASV. 2004.
VIII. Caredda, G., Makoond, N., Buitrago, M., Sagaseta, J., Chryssanthopoulos, M., & Adam, J. M., : ‘Learning from the progressive collapse of buildings’. Developments in the built environment. Vol. 15, pp. 100194, 2023. 10.1016/j.dibe.2023.100194.
IX. Geniyev G. A., : ‘Dynamic effects in rod systems made of physical non-linear brittle materials’. Promyshlennoe i grazhdanskoe stroitel’stvo. Vol. 9, pp. 23–24, 1999.
X. Grunwald, C., Khalil, A. A., Schaufelberger, B., Ricciardi, E.M., Pellecchia, C., De Iuliis, E., Riedel, W., : ‘Reliability of Collapse Simulation – Comparing Finite and Applied Element Method at Different Levels’. Eng Struct. Vol. 176, pp. 265–278, 2018. 10.1016/j.engstruct.2018.08.068.
XI. Kaklauskas, G., Sokolov, A., Sakalauskas, K., : ‘Strain Compliance Crack Model for RC Beams: Primary versus Secondary Cracks’. Engineering Structures. Vol. 281, pp. 115770, 2023. 10.1016/j.engstruct.2023.115770.
XII. Kodysh E.N., Mamin A.N., : ‘Discrete-connection model for determining the stress-strain state of plane structures. News of higher educational institutions’. Construction. Vol. 540(12), pp.13–20, 2003.
XIII. Kokot, S., Solomos, G., : ‘Progressive collapse risk analysis: literature survey, relevant construction standards and guidelines’. Ispra: Joint Research Centre, European Commission. 2012.
XIV. Kolchunov, V. I., Dem’yanov, A. I., : ‘The Modeling Method of Discrete Cracks in Reinforced Concrete under the Torsion with Bending’. Magazine of Civil Engineering. Vol. 81, pp. 160–173, 2018. 10.18720/MCE.81.16.
XV. Kolchunov, V. I., Dem’Yanov, A. I., ‘The modeling method of discrete cracks and rigidity in reinforced concrete’. Magazine of Civil Engineering. Vol. 4 (88), pp. 60-69, 2019. 10.18720/MCE.81.16.
XVI. Mkrtychev, O.V., : ‘Развитие Прямых Нелинейных Динамических Методов Расчета На Сейсмические Воздействия’. Промышленное и гражданское строительство. Pp. 12–16, 2022.
XVII. Niki, V., Erkmen, R. E., : ‘Shear Deformable Hybrid Finite Element Formulation for Buckling Analysis of Composite Columns’. Canadian Journal of Civil Engineering. Vol. 45, pp. 279–288, 2018. 10.1139/cjce-2017-0159.
XVIII. Pearson, C., Delatte, N., : ‘Ronan point apartment tower collapse and its effect on building codes’. Journal of Performance of Constructed Facilities. Vol. 19(2), pp. 172-177, 2005, 10.1061/(asce)0887-3828(2005)19:2(172).
XIX. Savin S. Y., Fedorova N.V., Kolchunov V. I., : ‘Dynamic forces in the eccentrically compressed members of reinforced concrete frames under accidental impacts’. International Journal for Computational Civil and Structural Engineering. Vol. 18(4), pp. 111–123, 2022.
XX. Savin, S., Kolchunov, V., Fedorova, N., Tuyen Vu, N., : ‘Experimental and Numerical Investigations of RC Frame Stability Failure under a Corner Column Removal Scenario’. Buildings. Vol. 13, pp. 908, 2023. 10.3390/buildings13040908.
XXI. SP 20.13330. Loads and actions. Revised version of SNiP 2.01.07-85. Standardinform, Moscow, Russia, 2016.
XXII. SP 385.1325800. Protection of buildings and structures against progressive collapse. Design code. Basic statements. Standardinform, Moscow, Russia, 2018.
XXIII. SP 63.13330. Concrete and reinforced concrete structures. General provisions. SNiP 52-01-2003. Standardinform, Moscow, Russia, 2018.
XXIV. Tagel-Din H., Rahman N.A., : ‘Simulation of the Alfred P. Murrah federal building collapse due to blast loads’. Building Integration Solutions. Vol. 32, pp. 1-15, 2006. 10.1061/40798(190)32.
XXV. Tagel-Din, H., Meguro, K., : ‘Nonlinear simulation of RC structures using applied element method’. Doboku Gakkai Ronbunshu. Vol. 654, 13-24, 2000. doi:10.1016/j.cscm.2020.e00457.
XXVI. Yu, J., Tan, K.H., : ‘Analytical Model for the Capacity of Compressive Arch Action of Reinforced Concrete Sub-Assemblages’. Magazine of Concrete Research. Vol. 66, pp. 109–126, 2014. 10.1680/macr.13.00217.

View Download