Authors:
D.P.Acharya,Chaitali Maji ,DOI NO:
https://doi.org/10.26782/jmcms.2008.06.00001Keywords:
microstretch layer ,wave propagation ,micropolarity,wave velocity,Abstract
- Starting from the fundamental equations of motion for liner homogeneous isotropic microstretch elastic solid media, two dimensional wave propagation in a microstretch layer has been investigated in this paper. Under suitable boundary conditions concerned frequency equations involving a eighth order determinant has been obtained. Expressing the determinant as a product of two fourth order determinants, several possibilities and the corresponding wave velocities have been found out in closed forms. Two interesting particular cases when the large of the wave is very small or large relative to the thickness of the layer have been discussed. Graphs have been drawn to highlight the effect of microstretch and micropolarty in the propagation of waves. It is found that the wave velocity increases with the increase of the microelastic parameter while the stretch character of the medium causes diminution of the wave velocity.
Refference:
I. Acharya, D.P. and Sengupta, P.R., 1976, surface waves in the micropolar thermo-elasticity, Acta Geophysica, Vol XXV, No.4.
II. Acharya, D.P. and Sengupta, P.R., 1979, Two dimensional wave propagationin a micropolar thermo-wlastic layer with stretch, Int.J.Engng, sci. vol-17, pp-1109-1116.
III. De, S.N. and Sengupta, P.R., 1974, Surface waves in micropolar elastic media, Bull., Del’Acad Polon Sci., Ser.Sci techn, vol XXII, no.3 pp-137-146.
IV. Eringen, A.C., 1990, Theory of thermo- microstretch elastic solids, Int. J. Engng. Sci. 28 1291-1301.
V. Eringen, A.C., 1994, Mechanics of micromorphic materials, in: H. Gortler (Ed.), Proc. 11th Int. Congress of Appl. Mech., Springer Verlag, New York.
VI. Eringen, A.C., Suhubi, E.S., 1964, Nonlinear theory of simple microelastic solids- I, Int. J. Engng. Sci. 2, 189-203.
VII. Eringen, A.C., 1998, Mechanics of micromorphic continua, in: Kroner (Ed.), IUTAM Symposium Mechanics of Generalized continua, Springer-Verlag, New-York, pp. 18-35.
VIII.Eringen, A.C., 1999, Microcontinuum Field Theories: Foundations and Solids, Springer-verlag, New York, Inc.
IX.Eringen, A.C., 2004, Electromagnetic theory of microstretch elasticity and bone modeling, Int. J. Engng. Sci. 42, 109-122.
X. Iesan, D., Scalia, A., 2003on complex potentials in the theory of microstretch elastic bodies, Int. J. Engng. Sci. 41, 1989-2003.
XI. Iesan, D., Quintanilla, R.1964, Existence and continuous dependence results in the theory of microstretch elastic bodies, Int. J. Engng. Sci.32, 991-1002.
XII. Iesan, D., Nappa, L., 1994, Saint venant’s problem for microstretch elastic solids, Int. J. Engng. Sci. 32, 229-236.
XIII. Kumar, R., Deswal, S., 2001, Disturbance due to mechanical and tharmal sources in a generalized thermo-microstretch elastic half-space, Sadhana 26(6) 529-547.
XIV. Lamb, H., 1916, On waves in an elastic plane, Proc. Roy Soc. S. 93, 114-128.
XV. Mondal, A.K. and Acharya, D.P., 2006, Surface waves in a micropolar elastic solid containing voids, Acta Ceophysica, Vol.54, No.4, pp 430-452.
XVI. Nowacki, W.,1970, Theory of Micropolar elasticity, International centre for Mechanical Sciences, udine couses and iecture No.25, Springer-verlag, Berlin.
XVII. Parfitt, V.R., Eringen, A.C., 1969, Reflection of plane waves from a flat boundary of a micropolar elastic half-space, J. Acoust. Soc. Am. 45, 1258-1272.
XVIII. Rayleigh, F.W., 1889, on the free vibration of an infinite plate of homogeneous isotropic elastic material, Proc, Math, Soc. 20, 225-234.
XIX. Singh , B., 2002, Reflection of nplane waves from free surface of a microstretch elastic solid, Proc. Indian Acad. Sci. (Earth Planet. Sci.) 111, 29-37.
XX. Singh, B., Kumar, R., 1998, Wave propagation in a generalized thermo_microstretch elastic soild, Int. J. Engng. Sci. 36, 819-912.
XXI. Suhubi, E.S. Eringen, A.C., 1964, Nonlinear theory of microelastic solids II, Int. J. Engng. Sci.36, 891-912.
XXII. Tomar, S.K., Gogna, M.L., 1992, Reflection and refraction of a longitudinal microrotational wave at an Interface between two micropolar elastic solids in welded contack, Int. J. Engng.Sci. 30, 1637-1646.
XXIII.Tomar, S.K., Gogna, M.L., 1995, Reflection and refraction of coupled transverse and microrotational waves at an interface between two different micropolar elastic media in welded contact, Int. J. Engng. Sci.33, 485-496.
XIV. Tomar, S.K., Kumar, R., 1999, Wave propagation at liquid/micropolar elastic soloid interface, J. Sound. Vibr. 222(5), 858-869.
XV. Tomar, S.K., Garg, M; 2005, Reflection and transmission of waves from a plane interface between two microstretch solid half-spaces, International Journal of Engng. Sci. 43, 139-169.
D.P Acharya ,Chaitali Maji View Download