Performance Evaluation of All-Optical OFDM System- Based Optical Frequency Comb Source

Authors:

Yousif Ibrahim Hammadi,TahreerSafa’a Mansour,

DOI NO:

https://doi.org/10.26782/jmcms.2019.08.00013

Keywords:

All-optical OFDM,Terabit per second (Tbit/s),Opticalfrequency comb source,Error vector magnitude (EVM),Eye diagram,

Abstract

In this paper, design and investigation of all-opticalorthogonal frequency division multiplexing (AO-OFMD) system using an optical frequency comb (OFC) source is presented. AnOFC source by cascading a frequency modulator (FM) and two intensity modulators is used as a multi-carrier’s generator to provide optically OFDM subcarriers. This OFC source can be provided a maximum comb lines number of 61 lines spaced by 25 GHz. The AO-OFDM scheme employed 31 and 51 comb lines can transmit a signal at a data rate of 1.55 and 2.55 Tbit/s, respectively. Numerical results are carried out using VPI transmission Maker® commercial software.

Refference:

I. A. Hammoodi, L. Audah, and M. A. Taher, “Green Coexistence f Waveform Candidates: A Review,” IEEE Access, vol. 7, pp. 10103-2019
II. II. A. Hraghi, M. E. Chaibi, M. Menif, and D. Erasme, “Demonstration of 16QAM-OFDM UDWDM transmission using a tunable optical flat comb source,” journal of lightwave technology, vol. 35, pp. 238-245, 2016
III. III. A. M. Jaradat, J. M. Hamamreh, and H. Arslan, “Modulation Options for OFDM-Based Waveforms: Classification, Comparison, and Future Directions,” IEEE Access, vol. 7, pp. 17263-17278, 2019
IV. F. Fresi, M. Imran, A. Malacarne, G. Meloni, V. Sorianello, E. Forestieri, et al., “Advances in optical technologies and techniques for high capacity ommunications,” Journal of Optical Communications and Networking, vol. 9, pp. C54-C64, 2017
V. I. Morohashi, T. Sakamoto, N. Sekine, A. Kasamatsu, and I. Hosako, “Ultrashort optical pulse source using Mach–Zehnder-modulator-based flat comb generator,” Nano Communication Networks, vol. 10, pp. 79-84, 2016
VI. J. He, F. Long, R. Deng, J. Shi, M. Dai, and L. Chen, “Flexible multiband OFDM ultra-wideband services based on optical frequency combs,”IEEE/OSA Journal of Optical Communications and Networking, vol. 9, pp. 393-400, 2017
VII. J. Morosi, J. Hoxha, P. Martelli, P. Parolari, G. Cincotti, S. Shimizu, et al., “25 Gbit/s per user coherent all-optical OFDM for Tbit/s-capable PONs,” Journal of Optical Communications and Networking, vol. 8, pp. 190-195, 2016
VIII. J. Thangaraj, “Generation of ultra-wide and flat optical frequency comb based on electro absorption modulator,” Optoelectronics Letters, vol. 14, pp. 185-188, 2018
IX. L. B. Du, J. Schröder, M. M. Morshed, B. Eggleton, and A. J. Lowery, “Optical inverse Fourier transform generated 11.2-Tbit/s no-guard-interval all-optical OFDM transmission,” in Optical Fiber Communication Conference, p. OW3B. 5., 2013
X. M. Imran, P. M. Anandarajah, A. Kaszubowska-Anandarajah, N. Sambo, and L. Potí, “A survey of optical carrier generation techniques for terabit capacity elastic optical networks,” IEEE Communications Surveys & Tutorials, vol. 20, pp. 211-263, 2018
XI. N.-P. Diamantopoulos, H. Nishi, W. Kobayashi, K. Takeda, T. Kakitsuka, and S. Matsuo, “On the Complexity Reduction of the Second-Order Volterra Nonlinear Equalizer for IM/DD Systems,” Journal of Lightwave Technology, vol. 37, pp. 1214-1224, 2019
XII. P. Guan, K. M. Røge, H. C. H. Mulvad, M. Galili, H. Hu, M. Lillieholm, et al., “All-optical ultra-high-speed OFDM to Nyquist-WDM conversion based on complete optical Fourier transformation,” Journal of Lightwave Technology, vol. 34, pp. 626-632, 2016
XIII. P. Martín-Mateos, A. Porro, and P. Acedo, “Fully Adaptable Electro-Optic Dual-Comb Generation,” IEEE Photonics Technology Letters, vol. 30, pp. 161-164, 2017
XIV. R. G. Hunsperger, Integrated optics vol. 4: Springer, 1995
XV. R. Mesleh and A.-O. Ayat, “Acousto-optical modulators for free space optical wireless communication systems,” Journal of Optical Communications and Networking, vol. 10, pp. 515-522, 2018
XVI. S. A. Srinivasan, M. Pantouvaki, S. Gupta, H. T. Chen, P. Verheyen, G. Lepage, et al., “56 Gb/s germanium waveguide electro-absorption modulator,” Journal of Lightwave Technology, vol. 34, pp. 419-424, 2015
XVII. S. I. Sohn and S. K. Han, “Linear optical modulation in a serially cascaded electro absorption modulator,” Microwave and Optical Technology Letters, vol. 27, pp. 447-450, 2000
XVIII. T. Kawanishi, “THz and Photonic Seamless Communications,” Journal of Lightwave Technology, 2019
XIX. T. Kishi, M. Nagatani, S. Kanazawa, W. Kobayashi, H. Yamazaki, M. Ida, et al., “56-Gb/s optical transmission performance of an InP HBT PAM4 driver compensating for nonlinearity of extinction curve of EAM,” Journal of Lightwave Technology, vol. 35, pp. 75-81, 2017
XX. V. Baryshev, V. Epikhin, I. Blinov, and S. Donchenko, “Acousto-optic modulators in Raman-Nath diffraction regime as phase modulators in modulation transfer spectroscopy,” in 2016 IEEE International Frequency Control Symposium (IFCS), pp. 1-4, 2016
XXI. V. J. Urick, K. J. Williams, and J. D. McKinney, Fundamentals of microwave photonics: John Wiley & Sons, 2015
XXII. Y. Kaymak, R. Rojas-Cessa, J. Feng, N. Ansari, M. Zhou, and T. Zhang, “A survey on acquisition, tracking, and pointing mechanisms for mobile free space optical communications,” IEEE Communications Surveys & Tutorials, vol. 20, pp. 1104-1123, 2018
XXIII. Y.-D. Lin, “Third Quarter 2018 IEEE Communications Surveys and Tutorials,” IEEE Communications Surveys & Tutorials, vol. 20, pp. 1607-1615, 2018

View Download