Authors:
M Ali Akbar,M, S. Uddin ,Mo. Rokibullslam,DOI NO:
https://doi.org/10.26782/jmcms.2008.06.00007Keywords:
microstretch layer,wave propagation,micropolarity,wave velocity,Abstract
Krylov-Bogolov-Mitropolskii (KBM) method has been extended and applied to certain third order non-oscillatory nonlinear systems characterizing critically damped .stems, For different· set oj tnisia! Conditions as well as for different eigenvalues the solutions obtained by the extended (KBM), ·method show good coiricidetlce with those obtained by the numerical method. The method is iIIustrated by all exampleRefference:
1) Ali Akbar, M., M. Shamsul Alam and M. A. Sattar, A Simple Technique for Obtaining Certain Over-damped Solutions of an n-th Order Nonlinear Differential Equation, Soochow Journal of Mathematics Vol. 31(2), pp. 291-299, 2005.
2) Bogoliubov, N. N. and Yu. Mitropolskii, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordan and Breach, New York, 1961.
3) Bojadziev, G. N., Damped Nonlinear Oscillations Modeled by a 3-dimensional Differential System, Acta Mechanica, Vol. 48, pp. 193-201, 1983.
4) Krylov, N. N. and N. N. Bogoliubov, Introduction to Nonlinear Mechanics, Princeton University Press, New Jersey, 1947.
5) Mendelson, K. S., Perturbation Theory for Damped Nonlinear Oscillations, J. Math. Physics, Vol. 2, pp; 3413-3415, 1970.
6) Murty, I. S. N., Deekshatulu, B. L. and Krishna, G. On an Asymptotic Method of Krylov-Bogoliubov for Over-damped Nonlinear Systems, J. Frank. Inst., Vol. 288, pp. 49-65, 1969.
7) Murty, I. S. N., and Deekshatulu, B. L., Method of Variation of Parameters for Over-Damped Nonlinear Systems, J. Control, Vol. 9, no. 3, pp. 259¬266,1969.
8) Murty, I. S. N., A Unified Krylov-Bogoliubov Method for Solving Second Order Nonlinear Systems, Int. J. Nonlinear Mech. Vol. 6, pp. 45-53, 1971.
9) Popov, I. P., A Generalization of the Bogoliubov Asymptotic Method in the Theory of Nonlinear Oscillations (in Russian), Doki. Akad. USSR Vol. 3, pp. 308-310, 1956.
10) Rokibul Islam, M., M. Ali Akbar, M. Samsuzzoha and Afroza Ali Soma, A New Technique for Third Order • Critically Damped Non-linear Systems, Research Journal Applied Science (Accepted for Publication).
11) Sattar, M. A., An asymptotic Method for Second Order Critically Damped Nonlinear Equations, J. Frank. Inst., Vol. 321, pp. 109-113, 1986.
12) Sattar, M. A., An Asymptotic Method for Three-dimensional Over-damped Nonlinear Systems, Ganit, J. Bangladesh Math. Soc., Vol. 13, pp. 1-8, 1993.
13) Shamsul Alam, M. and M. A. Sattar, An Asymptotic Method for Third Order Critically Damped Nonlinear Equations, J. Mathematical and Physical Sciences, Vol. 30, pp. 291-298, 1996.
14) Shamsul Alam, M., Asymptotic Methods for Second Order Over-damped and Critically Damped Nonlinear Systems, Soochow Journal of Math. Vol. 27, pp. 187-200, 2001.
15) Shamsul Alam, M., Bogoliubov’s Method for Third Order Critically Damped Nonlinear Systems, Soochow J. Math. Vol. 28, pp. 65-80, 2002.
16) Shamsul Alam, M., On Some Special Conditions of Third Order Over-damped Nonlinear Systems, Indian J. pure appl. Math. Vol. 33, pp. 727-742, 2002.
17) Shamsul Alam, M., A Unified Krylov-Bogoliubov-Mitropolskii Method for Solving n-th Order Nonlinear Systems, J. Frank. Inst. Vol. 339, pp. 239-248, 2002.
18) Shamsul Alam, M., On Some Special Conditions of Over-damped Nonlinear Systems, Soochow J. Math. Vol. 29, pp. 181-190, 2003.