MULTIPLE TIME SCALE METHOD FOR OVER-DAMPED PROCESSES IN BIOLOGICAL SYSTEM

Authors:

Md. Abdul Kalam Azad,M. Ali Akbar ,M. Abdus Sattar,

DOI NO:

https://doi.org/10.26782/jmcms.2010.01.00002

Keywords:

multiple time scale,over-damped process biological system,

Abstract

An over-damped solution of a nonlinear system has been investigated by multiple time scale method when one of the roots of the roots of the unperturbed equation is much smaller then the outhers. The anymptotic solunion shows excellent agreement with the numerical solution. An example is givin to biological system.

Refference:

I. Bogoliubov, N.N. and Yu. Mitropolskii, “Asymptotic Methods in the theory of nonlinear osillation,” Gordan and Breach, New York, 1961.

II. Bojadziev, G.N., “Damped nonlinear oscillations modeled by a 3-dimensional system”, Acta Mechanica, Vol.48, pp.193-201, 1983.

III.FitzHugh, R., Impulse and physiological states in theoretical models of nerve membrane”, J. Biophys., Vol.1 pp.445-466,1961.

IV.Goh. B.S., Global stability in many species systems, The American Naturalist, Vol.111, pp.135-143, 1977.

V. Hsu, I.D., and  Kazarinoff, “An applicable Hopf bifurcation formula and instabity of small periodic solution of the field-noice modle” , J.Math. Anal.Applic., Vol.55, pp.61-89, 1976.

VI. Kalam A.A., M.Samsuzzoha, M.Ali Akbar and M.Alhaj, “KBM asymptotic method for over-damped processes in biological and biochemical system.” GANIT, Bangladesh Math.Soc., Vol.26, pp.1-10,2006.

VII. Krylov,  N.N. and N.N. Bogoliubov, “Introduction to nonlinear mechanics”. Princeton University Press New Jersey, 1947.

VIII. Lefwver, R.and G. Nicolis, “Chemical instabilities and sustained oscillations”.J.Theor.Biol., Vol.30, pp.267-248, 1971.

IX. Lotka, A.J., “The growth of mixed popluation”, J. Wash. Acad. Sci. Vol.22, pp.461-469, 1932.

X. Murty, L.S.N. and B.L. Deekshatulu, “Method of variation of paeameters for over-damped nonlinear systems”, J.Control . Vol.9(3), pp.259-266, 1969.

XI. Murty, I.S.N., B.L.Deekshatulu and G. Krishna, “On asymptotic method of krylov-Bogoliubov for over-damped nonlinear systems”, J.Frak. Inst. Vol.288,pp.49-65, 1969.

XII. Popov, I.P. “A  generalization of the Bogoliubov asymptiotic method in the theory of nonlinear oscillation(In Russian).”, Dokl. Akad. Nauk. SSSR. Vol.3,pp.308-310, 1956.

XIII. Sattar. M.A., “An asymptotic method for second order critically damped nonlinear equation”. J.Frank.Inst. Vol.321,pp.109-113, 1986.

XIV. Shamsul Alam M., “An asymptotic method for second order over-damped and critically damped nonlinear systems”. Soochow Journal of Math. Vol.27(2), pp. 187-200, 2001.

XV.Shamsul Alam, M., “A unified Krylov-Bogoliubov-Mitropolskii method for solving n-order systems”, J.Franklin Inst., Vol.339, pp.239-248, 2002.

XVI. Shamsul Alam M., “On some special conditions of over-damped nonlinear systems”, Soochow Journal of Math. Vol.29(2),pp.181-190, 2003.

XVII.Shamsul Alam, M., M. Abul Kalam Azad and M.A. Hoque “A general Struble’s technique for solving an n-th order weakly nonlinear differential system with damping”, Int. J. Nonlinear Mech., Vol.41,pp.905-918, 2006.

XVIII. Troy, W.C., “Oscillating Phenomena in nerve condition equation”, Ph.D.Dissertation, SUNY at Buffelo, 1974.

XIX. Volterra, V., “Variazioni e fluttuazioni del numero d’individue in species animali conviventi”, Memorie del R. Comitato Talassografico Italiano, Vol.131, pp.1-142, 1927.

Md. Abul Kalam Azad, M. Ali Akbar ,M. Abdus Sattar View Download