Archive

Rprop Based Noble Blind Channel Equalization Algorithm for QAM Signal

Authors:

Prakhar Priyadarshi, C. S. Rai

DOI NO:

https://doi.org/10.26782/jmcms.2018.08.00006

Abstract:

In this paper, authors have considered the issue of slow convergence and moderate Bit Error Rate (BER) of Constant Modulus Algorithm used for channel equalization. Constant Modulus Algorithm (CMA), an extensively used gradient descent based unsupervised algorithm for QAM Signal, suffers from the poor convergence property as well as poor BER. Two novel blind equalization algorithms have been proposed which overcomes the problem of slow convergence and poor BER associated with CMA. Proposed algorithm incorporates modified CMA-like error function based on mean forth error criteria into Rprop frame work. Matlab Simulation of the proposed Rprop Based Improved Constant Modulus Type (RICMT) algorithm offers better result in terms of convergence, inter symbol interference (ISI) and bit error rate (BER) in a linear channel as well as for nonlinear channel in comparison to the CMA Equalizer for noisy environment.

Keywords:

Equalization,CMA,Mean Forth Error,Rprop,Convergence, Low BER,

Refference:

I.Benveniste, M. Goursat, and G. Ruget, ―Robust identification of a non minimum phase system: Blind adjustment of a linear equalizer in data communications,‖ IEEE Trans. Autom. Control, vol. AC-25, no. 3, pp385–399 ,(1980)

II.Christian Igel, Michael Husken ―Empirical evaluation of the improved Rprop learning algorithms‖ Neurocomputing vol.50,Elsevier publication ,pp 105 –123, (2003)

III.D.N. Godard, ―Self-recovering equalization and carrier tracking in two dimensional data communication systems‖, IEEE trans. on comm., Vol. 28, No. 11, (1980)

IV.Geng Nian, XUE Ni, RU Guobao ―Blind Equalization Algorithm Based on MCMA and DSE-CMA‖Wuhan Univ. J. Nat. Sci.Vol.13 No.1 pp 67-70,(2008)

V.Haykins ,― Adaptive Filter Theory‖, 4th edition, Pearson Education

VI.J. Yang, J.-J. Werner, and G. A. Dumont, ―The multimodulus blind equalization and its generalized algorithms,‖ IEEE Journal on selected areas in communication, Vol. 20, pp 997-1015, (2002)

VII.Johnson, Schniter, Endres, Behm, Brown & Casas, ―Blind equalization using the constant modulus criterion : A review‖ appeared in the proceeding of the ,IEEE (1998)

VIII.Kavita Burse, R. N. Yadav, and S. C. Shrivastava, ―Channel Equalization Using Neural Networks: A Review‖ IEEE Transaction On Systems, Man, And Cybernetics—Part C: Applications And Reviews, Vol. 40, No. 3, pp 352-357, (2010)

IX.L.M. Patnaik, K. Rajan ―Target detection through image processing and resilient propagation algorithms‖, Neurocomputing vol. 35, Elsevier publication, pp 123–135,(2000)

X.M. Riedmiller, ―Advanced supervised learning in multi-layer perceptrons—from back propagation to adaptive learning algorithms‖, Computer. Standards Interfaces 16, pp 265–278,(1994)

XI.Musa U. Otaru , Azzedine Zerguine ,Lahouari Cheded ―Channel equalization using simplified least mean-fourth algorithm‖ Digital Signal Processing ,Elsevier Publication, pp 447–465 , (2011)

XII.Prakhar Priyadarshi, C.S.Rai ―Blind Channel Equalization using Modified Constant Modulus Algorithm‖ International Conference on Computing, Communication and Automation (ICCCA), pp 1020-1024, (2016)

XIII.S.M. Shah , R. Samar ,S.M.R. Naqvi ,J.A. Chambers, ―Fractional order constant modulus blind algorithms with application to channel equalisation‖ ,Electronics Letter, IET, Volume: 50,pp 1702 -1704 ,(2014)

XIV.Shafayat Abrar, and Syed Ismail Shah, ―New Multimodulus Blind EqualizationAlgorithm With Relaxation‖IEEE Signal Processing Letters, Vol. 13, No. 7, pp 425-428 ,(2006)

XV.Shalvi, O. and Weinstein, E, ―New criteria for blind deconvolution of non minimum phase systems (channels)‖, IEEE Trans. Inform. Theory,(1990)

XVI.Zhang Liyi ,Chen Lei ,Sun Yunshan―Variable Step-size CMA Blind Equalization based on Non-linear Function of Error Signal‖, WRI International conference on Communications and Mobile Computing, CMC ’09.,(2009)

XVII.Zhao Baofeng ; Zhao Jumin ; Li Dengao, ―A New Variable Step-size Constant Modulus Blind Equalization Algorithm‖ IEEE International Conference Artificial Intelligence and Computational Intelligence (AICI), (2010)

View Download

To Negate the influences of Un-deterministic Dispersed Generation on Interconnection to the Distributed System considering Power Losses of the system

Authors:

Muhammad Aamir Aman, Muhammad Zulqarnain Abbasi, Murad Ali, Akhtar Khan

DOI NO:

https://doi.org/10.26782/jmcms.2018.08.00007

Abstract:

Now a days, the rapid need for electrical energy all over the world has put electrical power system under great stress. Due to day by day decrease in available conventional energy sources, researchers are shifting towards non-conventional energy resources or Dispersed generation (DG). DG is becoming a feasible alternative to overcome the power deficiency due to reduction in power losses, system reliability, and availability of power at consumer’s premises. With this need of DG, it’s important to analyze the adverse impact of DG on distributed power system. This research analyzes the effects of induction generator and synchronous generators on distribution system. The main outcome and objective of this research is to find optimum type, size and placement of DG to be injected in distributed system in order to have minimum impact on power losses of the system. By using globally renowned and modern software Electrical Transient Analyzer Program (ETAP) and taking Rahman Baba electricity distribution network as a test case. After analyzing, the results show that injecting DG has positive impacts on power losses at certain buses while 30% of power losses were decreased when induction generator as a DG unit was integrated with the distribution network in the optimum location. Also positive impacts of DG unit on power losses has been seen by injecting undeterministic small amount of synchronous generator as a DG unit and by increasing cross-sectional area of the conductor has showed much improvement in power losses.

Keywords:

Dispersed Generation,Power losses, Radial Distributed System,Synchronous generator,Induction generator,

Refference:

I.AlRuwaili, M. O., Vaziri, M. Y., Vadhva, S., & Vaziri, S. (2013, April). Impact of distributed generation on voltage profile of radial power systems. In Green Technologies Conference, 2013 IEEE (pp. 473-480). IEEE.

II.A. Bayat, A. Bagheri, and R. Noroozian, “Optimal siting and sizing of distributed generation accompanied by reconfiguration of distribution networks for maximum loss reduction by using a new uvda-based heuristic method,” International Journal of Electrical Power & Energy Systems, vol. 77, pp. 360–371, 2016.

III.A. Saidian, D. Mirabbasi, and M. Heidari, “The effect of size of dg on voltage flicker and voltage sag in closed-loop distribution system,” in Industrial Electronics and Applications (ICIEA), 2010 the 5th IEEE Conference on. IEEE, 2010, pp. 68–72.

IV.Caples, D., Boljevic, S., & Conlon, M. F. (2011, May). Impact of distributed generation on voltage profile in 38kV distribution system. InEnergy Market (EEM), 2011 8th International Conference on the European(pp. 532-536). IEEE.

V.Chen, P. C., Salcedo, R., Zhu, Q., De Leon, F., Czarkowski, D., Jiang, Z. P., … & Uosef, R. E. (2012). Analysis of voltage profile problems due to the penetration of distributed generation in low-voltage secondary distributionnetworks. IEEE Transactions on Power Delivery, 27(4), 2020-2028.

VI.Engr. Syed Ashraf Ali, Engr. Syed Haider Ali, Engr. Sajid Nawaz Khan, Engr. Muhammad Aamir “Energy Harvesting for Remote Wireless Sensor Network Nodes”(IJACSA) International Journal of Advanced Computer Science and Applications,Vol. 9, No. 4, 2018

VII.Muhammad Zulqarnain Abbasi, M. Aamir Aman, Hamza Umar Afridi, Akhtar Khan. “Sag-Tension Analysis of AAAC Overhead Transmission lines for Hilly Areas” International Journal of Computer Science and Information Security (IJCSIS), Vol. 16, No. 4, April 2018

VIII.P. Mohammadi, H. El-Kishyky, M. Abdel-Akher, and M. Abdel-Salam, “The impacts of distributed generation on fault detection and voltage profile in power distribution networks,” in Power Modulator and High Voltage Conference (IPMHVC), 2014 IEEE International. IEEE, 2014, pp. 191–196.

View Download

A new co-ordinated hybrid fuzzy logic and particle swarm optimization based PID controller for speed control of DC servomotor

Authors:

Arnob Senapati, Akash Maitra, Saswata Das, Souvik Chatterjee, Binanda Kishore Mondal, Abhishek Kumar Kashyap, Sudipta Ghosh

DOI NO:

https://doi.org/10.26782/jmcms.2018.08.00008

Abstract:

The speed control is an interesting and important term in control system engineering. Speed of the DC servomotor has to be varied according to application requirement. According to requirement suitable controllers and algorithm are use to achieve best control over speed. PID controller is a well known controller which is used in feedback control in industrial application. But in some industrial application the speed control with PID controller is not able to achieve the perfect control due to non linear element present in the system. Therefore in this research the Particle Swarm Optimization based PID controller and Hybrid Fuzzy Logic Controller are use to overcome this problem. Fuzzy logic control offers an improvement in the quality of the speed response concentrated by emulating the expert and implemented in language based on operator’s experience. Particle Swarm Optimization algorithm on the PID controller is an advanced approach for getting a stable and linear response of any system. PSO is a population based stochastic optimization technique is initialized with a population of random solutions and searches for optima by updating generations. A comparative analysis of performance analysis both the controllers have been done.

Keywords:

Speed Contro,DC Servomoto, PID,PSO,Fuzzy,Hybrid Fuzzy,

Refference:

I.Abhishek Kumar Kashyap,Binanda Kishore Mondal, Souvik Chattarjee, Sudipta Ghosh.A New Approach to Improve the Performance ofPosition Control of DC Servo Motor by Using FuzzyLogic Controller,J.Mech.Cont. & Math. Sci., Vol.-10, No.-2, January (2016) Pages 1551-1557.

II.Arnob Senapati, Abhishek Kumar Kashyap, Binanda Kishore Mondal, Souvik Chattarjee, Speed Performance Analysis and Control of DC Servomotor Using Linear & Nonlinear Controller, International Journal for Research in Applied Science & Engineering Technology (IJRASET), Volume 6 Issue III, March 2018

III.BettayebMaâmar, Mansouri Rachid, IMC-PID-fractional-order-filter controllers design for integer order systems, 2014 ISA, Published by Elsevier Ltd.

IV.Changliang Xia, Peijian Guo, Tingna Shi and Mingchao Wang, Speed Control of Brushless DC Motor Using Genetic Algorithm Based Fuzzy Controller, International Conference on Intelligent Mechatronics and Automation Chengdu,China August 2004,IEEE Proceedings ofthe 2004.

V.J.Archana, P.Suganthini, C.Malathi, DC Motor Speed Control Using Matlab,International Journal of Scientific Research Engineering & Technology (IJSRET), Volume 2 Issue 12 pp 832-834 March 2014.

VI.Katsuhiko Ogata, Modern Control Engineering, 5TH edition, Eastern Economy Edition, 2010.

VII.Md Akram Ahmad, Kamal Kishor, Pankaj Rai, Speed Control of a DC Motor Using Controllers. Automation, Control and Intelligent Systems, special Issue: Impact of Gesture Recognition in the Technological Era. Vol. 2, No. 6-1, 2014, pp. 1-9.

VIII.Nagrath, I.J. and M. Gopal, Control Systems Engineering, 3rd edition, New Age Publishers, 2000.

IX.SubhojitMalik, Palash Dutta, Sayantan Chakrabarti, Abhishek Barman,Parameter Estimation of a PID Controller using Particle Swarm Optimization Algorithm,International Journal of Advanced Research in Computer and Communication Engineering, Vol. 3, Issue 3, March 2014.

X.Thwin Thu Lynn, Eaint, Position Control of DC Servo Drive by Fuzzy Logic Controller in Flat-Bed Screen Printing Machine,American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 1, pp 8-19.

View Download

A Novel Architecture for Low Power Equiripple Half-Band FIR Filter using GDI Based Dual Edge Triggered Flip-Flop

Authors:

Biswarup Mukherjee, Aniruddha Ghosal

DOI NO:

https://doi.org/10.26782/jmcms.2018.08.00009

Abstract:

In this paper, a technique for implementing low-power equiripple half-band FIR filter using GDI based Dual Edge Triggered Flip Flop (DETFF) is introduced. Dual edge triggered flip flops has many advantages in low power VLSI compared to SETFF. The Proposed low power FIR filter using DETFF is implemented and compared with conventional design at same simulation conditions. CAD tool based simulation and comparison between proposed design with the conventional design shows that the proposed design reduces power dissipation by 32% reducing the no. of transistors used while keeping the same data rate.

Keywords:

Half-band FIR filter,Dual Edge Triggered Flip Flop (DETFF), GDI ,Multiplexer, Low power VLSI ,

Refference:

I.A.Liacha, A. K. Oudjida, F. Ferguene, M. Bakiri, M. L. Berrandjia, “Design of high-speed, low-power, and area-efficient FIR filters”, IET Circuits, Devices & Systems, Vol.: 12, Issue: 1, 2018

II.A. Morgenshtein, A. Fish and Israel A. Wagner, “Gate-Diffusion Input (GDI): A Power-Efficient Method for Digital Combinatorial Circuits”, IEEE Transaction on VLSI Systems, Vol. 10 issue 5, pp. 566-581, Oct. 2002

III.A. Ogata, N. Aikawa; M. Sato,”A design method of low delay FIR bandpass filters”, IEEE International Symposium onCircuits and Systems Emerging Technologies for the 21st Century, Volume: 1 Pages: 92 -95, 2000IV.B. Mukherjee, A. Ghosal, “Design & Study of a Low Power High Speed Full Adder Using GDI Multiplexer”, IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS),pp:465-470, 2015

V.B. Mukherjee, B. Roy, A. Biswas, A. Ghosal, “Design of a Low Power 4×4 Multiplier Based on Five Transistor (5-T) Half Adder, Eight Transistor (8-T) Full Adder & Two Transistor (2-T) AND Gate”, Third International Conference on Computer, Communication, Control and Information Technology (C3IT), 2015

VI.B. Yuan; Y. Wang, “High-Accuracy FIR Filter Design Using Stochastic Computing”, 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)pp: 128 –133, 2016

VII.G. N. Jyothi, S. SriDevi, “Distributed arithmetic architectures for FIR filters-A comparative review”, International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 2684-2690, 2017

VIII.G. Singh and C. Goel, “Design of Low Power andEfficient Carry Select Adder Using 3-T XOR Gate”, Advances in Electronics, Article ID 564613, 2014

IX.I. H. H. Jørgensen, P. Pracny, E. Bruun, “Hardware-Efficient Implementation of Half-Band IIR Filter for Interpolation and Decimation”, IEEE Transactions on Circuits and Systems II: Express Briefs, Volume: 60, Issue: 12, Pages: 892 -896, 2013

X.J. Chen; J. Tan, C. Chang, F. Feng, “A New Cost-Aware Sensitivity-Driven Algorithm for the Design of FIR Filters”, IEEE Transactions on Circuits and Systems I, Volume: 64, Issue: 6 pp: 1588 -1598, 2017

XI.J. Fadavi-Ardekani, “M*N Booth encoded multiplier generator using optimized Wallace trees”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Volume: 1, Issue: 2 pp: 120 -125, 1993

XII.Liang Li, Xingfa Huang, Zhou Yu, “A full custom half-band filter used for sigma-delta ADC”, International Conference on Anti-Counterfeiting, Security and Identification, pp-116-119, 2010

XIII.Nitin Kumar Saini , Kamal K. Kashyap; “Low power dual edge triggered flip-flop”, International Conference on Signal Propagation and Computer Technology (ICSPCT), 2014

XIV.P. P. Vaidyanathan, “Design and implementation of digital FIR filters,” in Handbook of Digital Signal Processing Engineering Applications, D. F. Elliott, Ed., pp. 55–172, Academic Press,London, UK, 1987.

XV.P. Zahradnik, “Equiripple Approximation of Low-pass FIR Filters Equiripple Approximation of Low-pass FIR Filters”,IEEE Transactions on Circuits and Systems II: Express Briefs, Issue: 99,pp. 1-5, 2017

XVI.P. Zhao, J. McNeely, P. Golconda,M. A. Bayoumi, R. A. Barcenas, W. Kuang, ” Low-Power Clock Branch Sharing Double-Edge Triggered Flip-Flop”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol.: 15, Issue: 3,pp: 338 -345, 2007

XVII.R. Kubasek, Z. Smekal, E. Gescheidtova, K.Bartusek, “Design of Two-channel Half-band Bank of Digital Filters using Optimization Methods”, International Conference on Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies, page: 151, 2006

XVIII.S. Archana, G. Durga, “Design of low power and high speed ripple carry adder”, International Conference on Communication and Signal pocessing, pp: 939 -943, 2014

XIX.S. K. Mitra and J. F. Kaiser, Handbook for Digital Signal Processing. New York,NY, USA: Wiley, 1993.

XX.S. Samadi, A. Nishihara, H. Iwakura, “Universal maximally flat low pass FIR systems”, IEEE Transactions on Signal Processing Vol: 48, Issue: 7,pp: 1956 -1964,2000

XXI.Wen Bin Ye, Xin Lou, Ya Jun Yu, “Design of Low-Power Multiplierless Linear-Phase FIR Filters” , IEEE Access, Volume: 5,pp: 23466 -23472,2017

XXII.X. Zhang, K. Intosume, and T. Yoshikawa, “Design of low delay FIR half-band filters with arbitrary flatness and its application to filter banks,” Electron. Comm. Jpn 3, vol. 8, no. 10, pp. 1–9, 2000

View Download

Design approach to a wound rotor induction motor towards optimization

Authors:

Pritish Kumar Ghosh, PradipKumarSadhu, Amarnath Sanyal, Debabrata Roy, Biswajit Dutta

DOI NO:

https://doi.org/10.26782/jmcms.2018.08.00010

Abstract:

About 88% of the driving power is produced by 3-phase and single-phase induction motors. In most part it is by squirrel-cage motors, only a small fraction by the slip-ring or phase-wound type. It is because the cage-type motors are relatively inexpensive. But they suffer from low p.f. operation and low starting torque which cannot be manipulated by inserting resistance in the rotor circuit. Also, this type of induction motors is not easily speed-adjustable. Though a little more expensive, the slip-ring type induction motors do not have these disadvantages. Therefore, they are used as speed-adjustable drives and for drives where heavy duty starting is involved. The design of any kind of power equipment should be made cost-optimally in the present day competitive market. A new approach to reaching optimal solution has been shown in this paper by the method of sequential searching with respect to the chosen design variables. Also, another design has been made following a hybrid of analytical and synthetic approach. The design variables have been chosen from designers’ experience. In contrary to the popular belief that there is no need for going in for complexity of optimal design, the quasi-optimal solution may be obtained by the designer from his accumulated experience, we find that the idea is wrong. The optimal design approach saves a lot of money.

Keywords:

Analytic design,synthetic design,hybrid design, optimal design,sequential searching, development of electrical engineering, Electrical applications,

Refference:

I.Bimbhra, P. S. (1973). Electric machinery. Khanna Publishers, ISBN: 81-7409-016-9.

II.Brunner, C. U. (2007). International standards for electric motors. Standards for Energy efficiency of ElectricMotor systems (SEEEM), 6-10.

III.Cunkas, M., & Amazan, A. R. (2006). Design optimization of induction motor by genetic algorithm and comparison with existing methods. Mathematical and computational Applications, II(3), 103-203.

IV.Deb, K. (2010). Optimization for engineering design. PHI, ISBN 978-81-203-0943-2.

V.Dubey, G. K. (2002). Fundamentals of electric drives. 2nd. Ed, Narosa Publishing House, ISNN: 81-7319-428-9.

VI.Erajskar, G., Bhattacharyya, M., & Mahendra, S. N. (1974). Computer-aided design of three phase squirrel cage induction motor-technical design, hybrid process and optimization. J.I.E (India),E.E. Div., India, 2-50.

VII.Ertan, H. B., & Aykanat, C. (2018). A new approach to optimized design of induction motor. Department of Electrical Engineering, Middle East Technical University, Ankara, Turkey.

VIII.Hasanah, R. N. (2009). Energy saving through design optimization of induction motor. Journal EECCIS, 3(1).

IX.Kambo, N. S. (1991). Mathematical programming techniques. Revised edition, Affiliated East-West Press Pvt. Ltd. New Delhi –110 001, ISBN 81-85336-47-4.

X.Kannan, R., Bhuvaneswari, R., & Subramanian, S. (2007). Optimal design of three-phase induction motor using Particle Swarm Optimization. Iranian Journal of Electrical and Computer Engineering, 6(2).

XI.Kentli, F. (2009). A survey of design optimization studies of induction motor during the last decade. Dept. of Electrical Education, Marmara University, Goztepe, Istambul, Turkey, 9(2), 969-975.
XII.Krihnamoorthy, A., & Dharmalingam, K. (2009). Application of genetic algorithm in the design optimization of 3-phase induction motor. Journal ofComputer Application, II(4).
XIII.Ramamoorty, M. (1987). Computer-aided design of electrical equipment. Affiliated East-West Press Pvt. Ltd., ISBN: 81-85095-57-4.
XIV.Ranjith kumar, K., Palaniswami, S., & Priyadharsini, K. (2010). Performance enhancement of wound rotor induction motor by VSI with dynamic capacitor controlled rotor circuit. International Journal of Computer Applications (0975 –8887), 3(9).
XV.Rao, S. S. (2009). Engineering optimization-theory and practice. New AgeInt., ISBN 978-81-224-2723-3.
XVI.Sakthivel, V. P., Bhuvaneswari, R., & Subramanian, S. (2010). Economic design of three-phase induction motor by Particle Swarm Optimization. J. Electromagnetic Analysis & Applications, 2, 301-310.
XVII.Sawhney, A. K. (2003). A course in electrical machine design. Dhanpat Rai and Sons, ISBN:670000000034.
XVIII.Shanmugasundaram, A., Gangadharan, G., & Palani, R. (2011). Electrical machine design data book. Wiley Eastern Ltd, ISBN 0852268130.
XIX.Sivaraju, S. S., & Devarajan, N. (2011). Novel design of three phase induction motor enhancing efficiency, maximizing power factor and minimizing losses. European Journal of Scientific Research, ISSN 1450-216X, 58(3), 423-432.
XX.Thangraj, C., Srivastava, S. P., & Agarwal, P. (2008). Optimal design of polyphase induction motor using improved particle swarm optimization. XXXII National System Conference, NSC2008.
XXI.Tudorache, T., & Melcescu, L. (2009). FEM optimal design of energy-efficient induction machines. Advances in Electrical and Computer Engineering, 9(2).
View Download

Photovoltaic (PV) System Feasibility for Urmar Payan a Rural Cell Sites in Pakistan

Authors:

Muhammad Aamir Aman, Muhammad Zulqarnain Abbasi, Hamza Umar Afridi, Mehr-e-Munir, Jehanzeb Khan

DOI NO:

https://doi.org/10.26782/jmcms.2018.08.00011

Abstract:

Abstract Exponential growth in cellular services has fueled the penetration of telecommunication industry in rural areas of Khyber Pakhtunkhwa (KPK). However, the scarcity of electricity at such localities has limited the growth and operation of network operators. One solution to overcome the problem includes utilization of diesel generator along with grids for continuous supply. However, this solution requires high fuel consumption, extensive maintenance and elevated delivery cost, which makes its operation less efficient. Photovoltaic (PV) systems are anticipated to solve the problem by providing necessary power at increased reliability and performance. This paper proposes the use PV system along with grids at rural areas of KPK to increase the operation and reliability of base stations (BTS’s). Feasibility of the proposed design is checked via Hybrid Optimization Model for Electrical Renewable(HOMER) Software. It is shown that the proposed PV grid hybrid system is more efficient as compared to the diesel and standalone PV system at the rural cell sites in KPK, Pakistan. Keywords:Cellular networks, Base station, Photovoltaic (PV) system, Feasibility.

Keywords:

Cellular networks,Base station,Photovoltaic (PV)system,Feasibility,

Refference:

I.B. Awan and Z. A. Khan, “Recent progress in renewable energy–remedy of energy crisis in pakistan,” Renewable and Sustainable Energy Reviews, vol. 33, pp. 236–253, 2014

II.J. B. Faheem, “Energy crisis in Pakistan,” IRA-International Journal of Technology & Engineering (ISSN 2455-4480), vol. 3, no. 1, 2016.

III.K.Harijan, M. A. Uqaili, and M. Memon, “Renewable energy for managing energy crisis in pakistan,” in Wireless Networks, Information Processing and Systems. Springer, 2008, pp. 449–455.

IV.M. Asif, “Sustainable energy options for pakistan,” Renewable and Sustainable Energy Reviews, vol. 13, no. 4, pp. 903–909, 2009.

V.M. N. Fatemi, “Solar ready roof design for high-performing solar installation in dhaka: Potentials and strategies,” Energy Technology (ICDRET’lZ), 2012.

VI.Muhammad Zulqarnain Abbasi, M. Aamir Aman, Hamza Umar Afridi, Akhtar Khan. Electrical Engineering Department, IQRA National University, Peshawar, Pakistan.“Sag-Tension Analysis of AAAC Overhead Transmission lines for Hilly Areas” International Journal of Computer Science and Information Security (IJCSIS), Vol. 16, No. 4, April 2018

VII.N. Haq and K. Hussain, “Energy crisis in Pakistan,” IPRI Factfile, 2008.

VIII.N. J. Bojeryd, “Method and apparatus for providing cellular telephone service to a macro-cell and pico-cell within a building using shared equipment,” Aug. 31 1999, uS Patent 5,946,622

IX.P. Nema, R. Nema, and S. Rangnekar, “Pv-solar/wind hybrid energy system for gsm/cdma type mobile telephony base station,” international journal of energy and environment, vol. 1, no. 2, pp. 359–366, 2010

X.S. M. Kaplan, F. Sissine, and T. Net, Smart Grid: Modernizing electric power transmission and distribution; Energy independence, Storage and security; Energy independence and security act of 2007 (EISA); Improving electrical grid efficiency communication, reliability, and resiliency; integrating new and renewable energy sources. The Capitol Net Inc, 2009.

XI.Y. Chen, S. Zhang, S. Xu, and G. Y. Li, “Fundamental trade-offs on green wireless networks,” Communications Magazine, IEEE, vol. 49, no. 6, pp. 30–37, 2011.

View Download

Designing A Hybrid Full Adder Circuit Based On The Combination Of Cmos And Set Transistors

Authors:

Seyed Mohammad Jalal Rastegar Fatemi, Nasim Goudarzi, Morteza Rostami

DOI NO:

https://doi.org/10.26782/jmcms.2018.08.00012

Abstract:

Abstract Single electron devices are new in Nano-electrics and are able to control currents on the scale of a single or multiple electrons. Relying on this ability, these devices have a potential capacity for mitigation of circuits' energy consumption. Nevertheless, it is anticipated that in a near future the manufacturing technologies will advance and these devices would become of extensive application in integrated circuits. The working basis of these devices is electron tunneling in a structure with Nano dimensions. The present paper firstly states the control mechanism of single electron displacement in a tunnel bond and secondly, investigates the manner of application of this mechanism in the most important single electron structures. According to the results, a hybrid full adder circuit has been simulated using the HSpice software. Overall, the results have shown that compared to previous works, the proposed hybrid circuit is advantageous in terms of power consumption and PDP. Key words: single electron devices, tunnel bond, coulomb blockade, full adder

Keywords:

single electron devices,tunnel bond, coulomb blockade,full adder,

Refference:

I.Beenakker, C.W.J. “Theory of Coulomb blockade oscillations in the conductance of a quantum dot”, Phys. Rev. B, 44(4), pp 1646-1656 (1991).

II.Brown, K.R. Sun L. and Kane, B.E. “Electric field dependent spectroscopy of charge motion using a single-electron transistor”, Applied Phys. Ltrs., 88(21), pp 1-3 (2006).

III.Devoret, M.h. Esteve D. and Urbina, C. “Single electron transfer in metallic nanostructures”, Nature, 36, pp 547-553 (1992).

IV.Guimaraes, J.G. Nobrega L.M. and Costa, J.C. “Design of a Hamming neural network based on single-electron tunneling devices”, Micro. J., 37(6), pp510-518 (2006).

V.Kikombo, A.K. Oya T. and Asai, T. “Discrete Dynamical Systems Consisting of Single-Electron Circuits”, Int. J. Bifurcation and Chaos, 17(10), pp 3613-3617 (2007).

VI.Likharev, K.K. “Correlated discrete transfer of single electrons in ultrasmall tunnel junctions”, IBM J. Res. Dev., 32(1), pp 144-158 (1988).

VII.Mizuqaki Y., Kawai A. and Moriya, M.”Optimization of asymmetric single-electron transistor generating ac-induced dc current”, IEICE Electronics Express, 4(11), pp 345-350 (2007).

VIIIPekola, J.P. Vartiainen J.J. and Averin, D.V.”Hybrid single-electron transistor as a source of quantized electric current”, Nature Phys., 4(2), pp 120-124 (2008).

View Download

Improved Distance Measuring Using Laser Light

Authors:

Mehr-e-Munir, ShahidLatif, Muhammad Aamir Aman, Waleed Jan, Jehanzeb Khan

DOI NO:

https://doi.org/10.26782/jmcms.2018.08.00013

Abstract:

Abstract Distance measuring without physical contact and long distance measuring is always a challenge. Distance measuring using laser beam light is an effective way but it causes too much distortion due to back of signal from destination. To preserve the level of distortion a photovoltaic cell is used to measure the intensity of laser beam light. This paper emphasizes on design of a circuit which uses photovoltaic cell and multi-meter. This paper shows the improved long distance measuring technique using photovoltaic cell. Keywords: Beam laser light, distance, photovoltaic cell, solar cell, effective distance measuring

Keywords:

Beam laser light,distance,photovoltaic cell,solar cell,effective distance measuring,

Refference:

I.A. J. den Boef, “Interferometric laser rangefinder using a frequency modulated diode laser,” Appl. Opt., 26, 4545-4550 (1987)

II.A. cle’rentin, C. Pe’gard, and C. Drocourt,”Environment exploration using an active vision sensor,” Proc. of IEEE/RSJ IROS, pp. 1525-1530,1999

III.Ari Kilpela, „‟ Pulsed Time of Flight Laser Range Finder Techniques for Fast, High Precision Measurement Applications‟‟Department of Electrical and Information Engineering, University of Oulu, OULU (2004)

IV.Dirk Stöbener, Matko Dijkman, Dennis Kruse, Holger Surm,Olaf Keßler, Peter Mayr, Gert Goch “Distance Measurement With Laser Triangulation in Hot Enviroment” Proceeeding, XVII IMEKO world Congress, June 22 –27, 2003, Dubrovnik, Croatia.

V.G. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognitionin unconstrained environments. University of Massachusetts,Amherst, Technical Report 07-49, 2007.

VI.H. Baltzakis, A. Argyros, and P. Trahanias, ‘Fusion of laser and visual data for robot motion planning and collision avoidance,” Machine Vision and Application, vol. 12, pp. 43 1-441, 2003.

VII.H. Kikuta, K. Iwata, R. Nagata, “Distance measurement by the wavelength shift of laser diode light,” Appl. Opt., 25, 2976-2980 (1986)

VIII.IVP Ranger M50 Hardware manual, Integrated Vision Products, Swedan.

IX.N. Tsabourakis, M. Ristic, and C.B. Besant, ‘Development of a profile gauging sensor,” Int. J. of Adv. Manufacturing Technology, vol. 3, pp. 5166, 1988

X.P. Hua, G. Viola and S. Drucker. Face recognition using discriminativelytrained orthogonal rank one tensor projections.In Proc. CVPR, 2007

XI.Q. Zhang, and R. Pless, ‘Extrinsic calibration of a camera and laser range finder (improvescamera calibration),” Proc. of IEEE/RSJ IROS, pp. 23012306, 2004

XII.T.A. Clarke, K.T.V. Grattan, N.E. Lindsey, “Laser based triangulation techniques in optical inspection of industrial structures” School of Engineering, City University, Northampton Square, London, ECIV OHB, England.

View Download

Approximate Solution of Strongly Forced Nonlinear Vibrating Systems Which Vary With Time

Authors:

Pinakee dey, Nasir Uddin, Md Asaduzzaman, Sanjay kumar saha, M. A. Sattar

DOI NO:

https://doi.org/10.26782/jmcms.2018.10.00001

Abstract:

Based on the combined work of extended Krylov-Bogoliubov-Mitropolskii method and harmonic balance (HB) method an analytical technique is presented to determine approximate solutions of nonlinear differential systems whose coefficients change slowly and periodically with time. Furthermore, a non-autonomous case also investigated in which an external force acts in this system. Formulation as well as determination of the solution is systematic and easier than the existing procedures. The method is illustrated by suitable examples.

Keywords:

Asymptotic solution,Forced nonlinear oscillation, Varying coefficient,Unperturbed equation, KBM method, HB method,

Refference:

I.C. W. Lim and B. S. Wu. “A new analytical approach to the Duffing-harmonic oscillator”, Physics Letters A, 311, 365-373, 2003.

II.I. S. N. Murty, “A unified Krylov-Bogoliubov method for second order nonlinear systems”, Int. J. nonlinear Mech. 6. 45-53. 1971.

III.I. P. Popov. “A generalization of the Bogoliubov asymptotic method in the theory of nonlinear oscillations”, Dokl.Akad. Nauk SSSR 111, 308-310 (in Russian) 1956.

IV.J. C. Arya and G. N. Bojadziev, “Damped oscillating systems modeled by hyperbolic differential equations with slowly varying coefficients”, Acta Mechanica, 35, 215-221, 1980.

V.K.C. Roy and M. Shamsul Alam. “Effect of higher approximation of Krylov-Bogoliubov-Mitropolskii solution and matched asymptotic solution of a differential system with slowly varying coefficients and damping near to a turning point”, Vietnam Journal of Mechanics, VAST, 26,182-192, 2004.

VI.M. Shamsul Alam,. “Unified Krylov-Bogoliubov-Mitropolskii method for solving n-th order nonlinear system with slowly varying coefficients”, Journal of Sound and Vibration, 256. 987-1002, 2003.

VII.N. N. Bogoliubov and Yu. Mitropolskii.“Asymptotic methods in the theory of nonlinear oscillations”, Gordan and Breach, New York, 1961.

VIII.N. N. Krylov and N. N. Bogoliubov, “Introduction to nonlinear mechanics”. Princeton University Press, New Jersey, 1947.

IX.R. E. Mickens. “Oscillation in Planar Dynamic Systems”, World Scientific, Singapore, (1996).

X.Yu. Mitropolskii. “Problems on asymptotic method of non-stationary oscillations” (in Russian), Izdat, Nauka, Moscow, 1964.

View Download

Design and Comparison of PI and Back-Stepping Control for Single Phase Two-Stage Grid Connected PV System

Authors:

Syed Qaiser Ahmad Shah, Khalid Mahmood, Syed Shafiq Ahmad Shah, Mehr-e-Munir, MuhammadAamir Aman

DOI NO:

https://doi.org/10.26782/jmcms.2018.10.00002

Abstract:

In grid connected two stage PV system some Control technique are applied to get maximum power point, voltage adjustment of boost converter , inverter voltage , DC link voltage control, grid current control, power factor improvement and reduction in total harmonics distortions. In this paper the two control techniques like back-stepping control and PI control are designed and their results are compared. The output behavior of the PV array is non-linear, there is a continuous change in output power, due to change in the temperature and change in irradiations. Due to this nonlinear behavior of PV the maximum power point is affected. To achieve maximum power point a special type of tracking system is used. In this paper the main objective like dc-link voltage control, grid current control, power factor improvement and reduction in total harmonics

Keywords:

Maximum power Point tracking (MPPT),Photovoltaic (PV),stepping Control (BSC), Total Harmonics Distortion (THD),

Refference:

I.A. Mehazzem, and A. Khezzar “ Advanced BackStepping controller for the Induction generator using multi-scalar machine model for wind power purposes”. Renewable Energy journal, 18 February 2010.

II.C. Aouadi, A. Abouloifa, A. Hamdoun and Y. Boussairi, “Nonlinear controller design for single-phase grid-connected photovoltaic systems,” 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, 2015, pp. 1-5.

III.E. Mamarelis, G. Petrone, and G. Spagnuolo, “A two-steps algorithm improving the P&O steady state MPPT efficiency,” Applied Energy, 2014, vol. 113, p.p 414-421.

IV.G. Singh “Solar Power generation by PV (photovoltaic) Technology:A review” Volume 53, Pages1-13 1 May 2013

V.“M. Mirhosseini et al.”“Single-stage inverter-based grid-connected photovoltaic PV power plant with ride-through capability over different types of grid fault”.in Proc. Annu. Conf. IEEE Ind.Electron. Soc. (IECON), pp. 8008–8013, Nov. 2013.

VI.N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “A technique for improving P&O MPPT performances of double-stage grid-connected photovoltaic systems,” IEEE Trans. Industrial Electronics, vol. 56, no.11, pp. 4473-4482, Nov. 2009.

VII.S. V. Araújo, P. Zacharias, and R. Mallwitz, “Highly efficient single-phase transformer less inverters for grid-connected photovoltaic systems”, IEEE Trans. Industrial Electronics, vol. 57, no. 9, pp. 3118-3128,Sep. 2010.

VIII.S. Jain and V. Agarwal, “A single-stagegrid connected inverter topology for solar PV systems with maximum power point tracking,” IEEE Trans. Power Electronics, vol. 22, pp. 1928–1940, Sept. 2007.

IX.S. Chin, J. Gadson, and K. Nordstrom, “Maximum Power Point Tracker,” Tufts University Department of Electrical Engineering and Computer Science, 2003, pp. 1-66

X.T. Prasad, V. Dixit and R. Kumar, “Simulation and Analysis of Perturb and Observe MPPT Algorithm for PV Array Using ĊUK Converter” Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 2 (2014), pp. 213-224.

XI.T. Kitano, M. Matsui, D. Xu, “A maximum power point tracking control scheme for PV system based on power equilibrium and its system design”, IEEJ Trans. Industry App., vol.121, no.12, 2001, pp.1263-1269.

View Download