Archive

ANISOTROPIC PICONE IDENTITIES FOR HALF LINEAR CONFORMABLE ELLIPTIC EQUATIONS

Authors:

N. Sasikala, V. Sadhasivam

DOI NO:

https://doi.org/10.26782/jmcms.2024.06.00005

Abstract:

This study is devoted to investigating the anisotropic picone identities for half-linear Conformable elliptic equations and the Hardy-type inequality. Further, we provide some results for the nonlinear analogue to Picone identity.

Keywords:

Anisotropic picone identities,Conformable elliptic equations,Half-linear Conformable elliptic equations,Hardy-type inequality,

Refference:

I. Abdelijawad T., : ‘On Conformable fractional Calculus’. Journal of Computational and Applied Mathematic. Vol. 279, pp. 57-66, 2015. 10.1016/j.cam.2014.10.016
II. Allegretto W., : ‘On the equivalence of two type of oscillation for elliptic operators’. Pacific. J. Math. Vol. 55(2), pp. 319-328, 1974.
III. Allegretto W., : ‘Sturmianian theorems for second order systems’. Proc. Am. Math. Soc. Vol. 20, pp. 213-219, 1985.
IV. Allegretto W., Huang Y., : ‘A Picone’s identity for the p-Laplacian and applications’. Nonlinear Anal. Vol.32(7), pp. 819-830, 1998. 10.1016/S0362-546X(97)00530-0
V. Alves CO., El Hamidi A., : ‘Existence of solution for a anisotropic equation with critical exponent’. Differ. Integral Equ. Vol. 21(1-2), pp. 25-40, 2008. 10.57262/die/1356039057
VI. Bal K., : ‘Generalized Picone’s identity and its applications’. Electronic Journal of Differential Equations. Vol. 243, pp. 1-6, 2013. https://ejde.math.txstate.edu/Volumes/2013/243/bal.pdf
VII. Bendahmane M., Karlsen K. H., : ‘Renormalized solutions of an anisotropic reaction diffusion – advection system with L1 data’. Commun. Pure Appl. Anal. Vol. 5(4), pp. 733-762, 2006. 10.3934/cpaa.2006.5.733
VIII. Bendahmane M., Langlais M., Saad M., : ‘On some anisotropic reaction- diffusion systems with L1-data modeling the propagation of an epidemic disease’. Nonlinear Anal. Vol.54(4), pp: 617-636, 2003. 10.1016/S0362-546X(03)00090-7
IX. Bognar G., Dosly O., : ‘The Applications of picone – type identity for some non linear elliptic differential equations’. Acta. Mathematica Universitatis Comenianae. vol.72(1) , pp: 45 – 57, 2003 . https://eudml.org/doc/126945
X. Cianchi A., : ‘Symmetrization in anisotropic elliptic problems’. Commun. Partial Differ. Equ. Vol.32(5), pp. 693-717, 2007. 10.1080/03605300600634973
XI. Cirstea F. C., Vetois J., : ‘Fundamental solutions for anisotropic elliptic equations: existence and a priori estimates’. Commun. Partial Differ. Equ. Vol. 40(4), pp. 727-765, 2015. 10.1080/03605302.2014.969374
XII. Dwivedi G., Tyagi J., : ‘Remarks on the Qualitative questions for biharmonic operators’. Taiwanese J. Math. Vol.19(6), pp. 1743-1758, 2015. 10.11650/tjm.19.2015.5566
XIII. Dwivedi G., Tyagi J., : ‘Picone’s identity for biharmonic operators on Heisenberg group and its applications’. Nonlinear Differ. Equ. Appl. Springer International Publishing. Vol.23(10), pp. 2-26, 2016. 10.1007/s00030-016-0376-z
XIV. Evans Lawrence C., : ‘Partial differential equations’. American Mathematical Society. Vol.19, 1998.
XV. Gayathi T., Deepa M., Kumar M. S., Sadhasivam V., : ‘Hille and Nehari type oscillation criteria for conformable fractional differential equation’. Iraqi Journal of science. Vol. 62(2), pp. 578-587, 2021. 10.24996/ijs.2021.62.2.23
XVI. Giocomoni J., Saudi K., : ‘Multiplicity of positive solutions for a singular and critical problem’. Nonlinear Anal. Vol.71(9), pp. 4060-4077, 2009. 10.1016/j.na.2009.02.087
XVII. Hilfer H., : ‘Applications of Fractional Calculus in Physics’. World Scientific Publishing Company, Singapore. 2000.
XVIII. Iturriaga L., Lorca S., Sanchez J., : ‘Existence and multiplicity results for the P-Laplacian with the P- Gradient term’. Non-Linear Differential Equations. Appl. Vol.15, pp. 729-743, 2008. 10.1007/s00030-008-0064-8
XIX. Jaros J., : ‘Caccioppoli estimates through an anisotropic picone’s identity’. Proceedings of the American Mathematical Society. Vol. 143(3), pp: 1137-1144, 2015. https://www.jstor.org/stable/24507380
XX. Khalil R. R., Horani AI., Yousef M., Sababheh M., : ‘A New definition of fractional derivative’. J. Com. Appl. Math. Vol. 264, pp. 65-70, 2014. 10.1016/j.cam.2014.01.002
XXI. Kusano T., Jaros J., Yoshida N., : ‘A Picone-type identity and Sturmian comparison and oscillation theorems for a class of half-linear partial differential equations of second order’. Nonlinear Anal. Vol.40 (1-8), pp. 381-395, 2000. 10.1016/S0362-546X(00)85023-3
XXII. Lieberman Gm., : ‘Gradient estimates for anisotropic elliptic equations’. Adv. Differ. Equ. Vol.10(7), pp. 767-812, 2005. 10.57262/ade/1355867831
XXIII. Sadhasivam V., Deepa M., : ‘Oscillation criteria for fractional impulsive hybrid partial differential equations’. Probl. Anal. Issues Anal. Vol. 8(26)(2), pp. 73-91, 2019. 10.15393/j3.art.2019.5910
XXIV. Sathish Kumar M., Veeramalai G., Janaki S., Ganesan V., : ‘Qualitative behavior of third order damped nonlinear differential elliptic differential equations with several delays’. Journal of Mechanics of Continua and Mathematical Sciences. Vol.19(4), pp. 1-23, 2024. 10.26782/jmcms.2024.04.00005
XXV. Thandapani E., Savithri R., : ‘On Oscillation of a Neutral Partial Differential Equations’. Bulletin of the Institute of Mathematics Academia Sinica. Vol. 31(4), pp. 273-292, 2003.
XXVI. Tyagi J., : ‘A nonlinear Picone’s identity and its applications’. Applied Mathematics Letters. Vol. 26(6), pp: 624-626, 2013. 10.1016/j.aml.2012.12.020
XXVII. Yoshida N., : ‘Oscillation theory of partial differential equations’. World Scientific, Singapore. 2008.

View Download

A COMPREHENSIVE DESIGN AND SIMULATION OF QUADRUPOLE ELECTROMAGNETIC LINEAR SYSTEMS FOR PRECISE POSITIONING IN AEROSPACE

Authors:

Kintali Manohar, Kondamudi Srichandan

DOI NO:

https://doi.org/10.26782/jmcms.2024.06.00006

Abstract:

For linear motion applications, particularly in aerospace, this study outlines the creation of an essential Quadrupole Electromagnetic System (QES) as a substitute for a four-track electromagnetic launcher. The QES design is compared with a four-track system to address concerns regarding rail-armature contact sliding. In a QES, four coils provide a homogeneous electromagnetic field, resulting in a Lorentz force on the slider. The QES was designed using the three-dimensional modeling capabilities of the ANSYS software. The results of the magnetic properties show a high potential for scaling this model to various levels. Additionally, the QES power circuit was simulated using ANSYS Simplorer. The circuit uses silicon-controlled rectifiers (SCR) and a pulse-width modulation (PWM) pulse generator. A force of 4kN was achieved, and this paper presents the current and force plots in detail. The study includes finite element analysis, electromagnetic and current characteristics simulation, and monitoring of the skin and proximity effects. Performance is increased by optimizing the QES design parameters using Particle Swarm Optimization (PSO). The simulation results demonstrate the feasibility and scalability of the QES design.

Keywords:

Electromagnetics,Finite element analysis,Four-track electromagnetic launcher,Particle Swarm Optimization (PSO),

Refference:

I. Cassat A., et al., : ‘Direct linear drives: Market and performance status’. Proceedings of the 4th International Symposium on Linear Drives for Industry Applications. UK: Birmingham, 2003.Boldea I, Naser SA. Linear motion electromagnetic systems. (First). Wiley-Interscience Hardcover, Fair, United Kingdom 1985.
II. Cupertino Francesco, et al., : ‘Sliding-mode control with double boundary layer for robust compensation of payload mass and friction in linear motors’. IEEE Transactions on Industry Applications. Vol. 45(5), pp. 1688-1696, 2009. 10.1109/TIA.2009.2027521
III. Dong Liang, Shuqi Sun, and Haiyang Wu., : ‘Study of capacitor parameters on the optimal trigger position of multipole field reconnection electromagnetic launcher’. IEEE Transactions on Plasma Science. Vol. 49(7), pp. 2153-2160, 2021. 10.1109/TPS.2021.3084632
IV. Engel Thomas G., and Michael J. Veracka. : ‘The voltage–current scaling relationship and impedance of DC electromagnetic launchers’. IEEE Transactions on Plasma Science. Vol. 43(5), pp. 1271-1276. 2015. 10.1109/TPS.2015.2418053
V. Ferkova Z. et al., : ‘Electromagnetic design of ironless permanent magnet synchronous linear motor’. 2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion. IEEE, 2008. 10.1109/SPEEDHAM.2008.4581085
VI. Gordon Seamus, and Michael T. Hillery. ‘Development of a high-speed CNC cutting machine using linear motors’. Journal of Materials Processing Technology Vol. 166(3), pp. 321-329, 2005. 10.1016/j.jmatprotec.2003.08.009
VII. Gutierrez Hector et al., : ‘Non-contact DC electromagnetic propulsion by multipole transversal field: Numerical and experimental validation’. IEEE Transactions on Magnetics. Vol. 52(8), pp. 1-10, 2016. 10.1109/TMAG.2016.2553644
VIII. Kim Seog-Whan, Hyun-Kyo Jung, and Song-Yop Hahn. ‘Optimal design of multistage coilgun’. IEEE transactions on magnetics. Vol. 32(2), pp. 505-508, 1996. 10.1109/20.486539.
IX. Kleinkes Michael, Werner Neddermeyer, and Michael Schnell. ‘Improved method for highly accurate integration of track motions’. ICINCO-RA. 2006. 10.5220/0001203504690473
X. Kondamudi Sri Chandan et al., : ‘A novel type coil-multipole field hybrid electromagnetic launching system’. Results in Physics. Vol. 15, 102786 2019. 10.1016/j.rinp.2019.102786.
XI. Kondamudi Srichandan, and Mallikarjuna Rao Pasumarthi. : ‘Computations of magnetic forces in multipole field electromagnetic launcher’. International Journal of Mathematical, Engineering and Management Sciences. Vol. 4(3) pp. 761, 2019. 10.33889/IJMEMS.2019.4.3-059.
XII. Laithwaite Eric R. and Syed A. Nasar. : ‘Linear-motion electrical machines’. Proceedings of the IEEE. Vol. 58(4) pp. 531-542, 1970. 10.1109/PROC.1970.7692.
XIII. Lesquesne B., : ‘Permanent magnet linear motors for short strokes.’ Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting. IEEE. 1992. https://doi.org/10.1109/IAS.1992.244449.
XIV. Luo Wenbo et al., : ‘Connection pattern research and experimental realization of single stage multipole field electromagnetic launcher’. IEEE Transactions on Plasma Science. Vol. 41(11), pp. 3173-3179, 2013. 10.1109/TPS.2013.2281240.
XV. Manohar Kintali, and Kondamudi Srichandan. : ‘Analysis of Quadrupole Magnetic Field Reluctance-Based Launcher With Different Coil Switching Patterns’. IEEE Transactions on Plasma Science. 2023) 10.1109/TPS.2023.3266515.
XVI. Manohar Kintali, and Kondamudi Srichandan. : ‘Design optimization of quad-pole electromagnetic ejection device using particle swarm optimization’. IEEE International Conference on Intelligent Systems, Smart and Green Technologies (ICISSGT). IEEE. 2021. 10.1109/ICISSGT52025.2021.00022.
XVII. Meinke R. B., C. L. Goodzeit, and M. J. Ball. : ‘Modulated double-helix quadrupole magnets’. IEEE transactions on applied superconductivity. Vol. 13(2), pp. 1369-1372, 2003. 10.1109/TASC.2003.812674.
XVIII. Musolino Antonino, Rocco Rizzo, and Ernesto Tripodi. : ‘Travelling wave multipole field electromagnetic launcher: An SOVP analytical model’. IEEE Transactions on Plasma Science. Vol. 41(5), pp. 1201-1208, 2013. https://doi.org/10.1109/TPS.2013.2246839.
XIX. Prasad Gajja, and Kondamudi Srichandan. : ‘Performance Evaluation on Two Wing Ring Type Armature with Inductive Type Electromagnetic Launching System’. IEEE 10th Power India International Conference (PIICON). IEEE, 2022. 10.1109/PIICON56320.2022.10045133.
XX. Shokair Isaac R., : ‘Projectile transverse motion and stability in electromagnetic induction launchers’. IEEE transactions on magnetics. Vol. 31(1), pp. 504-509, 1995. 10.1109/20.364641.
XXI. Thotakura Sandhya, Kondamudi Srichandan, and P. Mallikarjuna Rao. : ‘A novel configuration of multi-stage outrunner electromagnetic launching for aircraft catapult system’. Advances in Decision Sciences, Image Processing, Security and Computer Vision: International Conference on Emerging Trends in Engineering (ICETE). Vol. 2. Springer International Publishing, 2020. 10.1007/978-3-030-24318-0_44.
XXII. Xue Xinpeng, et al., : ‘A new electromagnetic launcher by sextupole rails: Electromagnetic propulsion and shielding numerical validation’. IEEE Transactions on Plasma Science. Vol. 45(9), pp. 2541-2545, 2017. 10.1109/TPS.2017.2728688.
XXIII. Yan Zhongming, et al., : ‘Study of single-stage double-armature multipole field electromagnetic launcher’. IEEE Transactions on Plasma Science. Vol. 45(8), pp. 2381-2386, 2017. 10.1109/TPS.2017.2716421.
XXIV. Yang Zhiyong et al., : ‘An electromagnetic rail launcher by quadrupole magnetic field for heavy intelligent projectiles’. IEEE Transactions on Plasma Science. Vol. 45(7), pp. 1095-1100, 2017. 10.1109/TPS.2016.2646377.
XXV. Yingwei Zhu et al., : ‘Analysis and evaluation of three-stage twisty octapole field electromagnetic launcher’. IEEE Transactions on Plasma Science. Vol. 40(5), pp. 1399-1406, 2012. 10.1109/TPS.2012.2188530.
XXVI. Zabar Z. et al. : ‘Improved method for highly accurate integration of track motions’. IEEE transactions on magnetics. Vol. 25(1), pp. 627-631, 1989. 10.1109/20.22613.
XXVII. Zhu Yingwei et al., : ‘Multipole field electromagnetic launcher’. IEEE transactions on magnetics. : Vol. 46(7), pp. 2622-2627, 2010. 10.1109/TMAG.2010.2044416.

View Download

IMPLEMENTATION OF AN EFFECTIVE FSO WDM SYSTEM UNDER DIFFERENT ATMOSPHERIC CONDITIONS WITH DIFFERENT CODING SCHEMES

Authors:

Basim Galeb, Dalal Abdulmohsin, Haitham Bashar, Kadhum Al-Majdi, Aqeel Al-Hilali

DOI NO:

https://doi.org/10.26782/jmcms.2024.06.00007

Abstract:

In different atmospheric conditions, Free Space Optical (FSO) transmission is vital because it sends data via light beams through the atmosphere. This technique transmits data quickly and efficiently with low signal attenuation in clear weather. This makes it ideal for short- to medium-range communication, especially in urban areas where cables or radio frequency spectrum are impractical. However, fog, rain, and snow can absorb or disperse the light signal, reducing transmission range and reliability for FSO. This research creates an effective FSO system that supports many channels and transmission distances. The suggested system will be tested in four weather conditions (light air, light rain, medium rain, and heavy rain) with attenuation values of 0.47, 1.988, 5.844, and 9.29 dB/km. Optisystem program version 21 designs and evaluates system performance based on QF, BER, and other criteria. In this research, multiple modulation formats are evaluated for best performance. QF exhibited a reversal relationship with distance, while BER showed a direct one. The suggested system can transmit for 25 km, 12 km, 10 km, and less than 6 km in light air, light rain, medium rain, and severe rain. This research also examines system performance under NRZ and RZ modulation formats. NRZ modulation is better for light air and clear weather transmission than RZ modulation since it requires less equipment and is easier to install. Since NRZ modulation requires no clock recovery overhead, bandwidth efficiency is usually higher. In light rain, RZ modulation minimizes optical fiber dispersion, extending transmission distances and improving signal quality. NRZ excels within 10 kilometers. NRZ works for 6 km and 4 km in medium and severe rain, although RZ's dispersion tolerance and synchronization make it better for longer transmission distances. For short distances, NRZ is suitable, but for longer distances, RZ is more resilient due to its better dispersion management and signal transmission.

Keywords:

FSO,NRZ,Optisystem,RZ,Radio Frequency,WDM,

Refference:

I. Al-Gailani S. A., Salleh M. F. M., Salem A. A., Shaddad R. Q., Sheikh U. U., Algeelani N. A., & Almohamad T. A., : ‘A survey of free space optics (FSO) communication systems, links, and networks’. IEEE Access. Vol. 9, pp. 7353-7373, 2020. 10.1109/ACCESS.2020.3048049
II. Alkholidi A. G., & Altowij K. S., : : ‘Free space optical communications — Theory and practices’. Contemporary Issues in Wireless Communications. Vol. 5, pp. 159-212, 2014. 10.5772/58884
III. Abdulwahid M. M., & Kurnaz S., : ‘The utilization of different AI methods-based satellite communications: A survey’. AIP Conference Proceedings. AIP Publishing. Vol. 3051(1), 2024. 10.1063/5.0192068
IV. Almetwali A. S., Bayat O., Abdulwahid M. M., & Mohamadwasel N. B., : ‘Design and analysis of 50 channel by 40 Gbps DWDM-RoF system for 5G communication based on fronthaul scenario’. In Proceedings of Third Doctoral Symposium on Computational Intelligence: DoSCI. Singapore: Springer Nature Singapore. Vol. 479. pp. 109-122, 2022. 10.1007/978-981-19-3148-2_9
V. Abdulwahid M. M., & Kurnaz S. : ‘The channel WDM system incorporates of Optical Wireless Communication (OWC) hybrid MDM-PDM for higher capacity (LEO-GEO) inter satellite link’. Optik. Vol. 273, 170449, 2023. 10.1016/j.ijleo.2022.170449
VI. Abdulwahid M. M., & Kurnaz S. : ‘Implementation of two polarization DQPSK WDM Is-OWC system with different precoding schemes for long-reach GEO Inter Satellite Link’. International Conference on Green Energy, Computing and Intelligent Technology (GEn-CITy 2023). IET. Vol. 2023, pp. 134-141, 2023. 10.1049/icp.2023.1772
VII. Abdulwahid M. M., Kurnaz S., Türkben A. K., Hayal M. R., Elsayed E. E., & Juraev D. A. : ‘Inter-satellite optical wireless communication (Is-OWC) trends: a review, challenges and opportunities’. Engineering Applications, Vol. 3(1), pp. 1-15, 2024.
VIII. Al-Azzawi, Alabbas A., et al., : ‘A 95× 40 Gb/s DWDM transmission system using broadband and flat gain amplification of promoted parallel EDFA’. Optical and Quantum Electronics. Vol. 54(12) pp. 870. 2022. 10.1007/s11082-022-04201-w
IX. Abdulwahid M. M., Abdullah H. K., Ateah W. M., & Ahmed S. : ‘Implementation of Automated Water based Level Management Model by using SCADA system and PLC. 2023. 10.55529/jeet.33.40.51
X. Burhan I. M., Al-Hakeem M. S., Abdulwahid M. M., & Mosleh M. F. : ‘Investigating the Access Point height for an indoor IOT services’. IOP Conference Series: Materials Science and Engineering. IOP Publishing.Vol. 881(1), 012116, 2020. 10.1088/1757-899X/881/1/012116
XI. Chan V. W., : ‘Free-space optical communications’. Journal of Lightwave technology. Vol. 24(12), pp. 4750-4762, 2006.
XII. F. Abayaje, S. A. Hashem, H. S. Obaid, Y. S. Mezaal, and S. K. Khaleel. : ‘A miniaturization of the UWB monopole antenna for wireless baseband transmission’. Periodicals of Engineering and Natural Sciences. Vol. 8(1), pp. 256-262, 2020. 10.21533/pen.v8i1.1034
XIII. H. A. Fadhil, A. Amphawan, H. A. B. Shamsuddin et al., : ‘Optimization of free space optics parameters: an optimum solution for bad weather conditions’. Optik. Vol. 124(19), pp. 3969–3973, 2013. 10.1016/j.ijleo.2012.11.059
XIV. H. A. Hussein, Y. S. Mezaal, and B. M. Alameri. : ‘Miniaturized microstrip diplexer based on FR4 substrate for wireless communications’. Elektron. Ir Elektrotech. Vol. 7(5), 2021. 10.5755/j02.eie.28942
XV. J. Ali and Y. Miz’el. : ‘A new miniature Peano fractal-based bandpass filter design with 2nd harmonic suppression 3rd IEEE International Symposium on Microwave’. Antenna, Propagation and EMC Technologies for Wireless Communications, Beijing, China, 2009. 10.1109/MAPE.2009.5355854
XVI. J. Singh and N. Kumar. : ‘Performance analysis of different modulation format on free space optical communication system’. Optik. Vol. 124(20), pp. 4651–4654, 2013. 10.1016/j.ijleo.2013.02.014
XVII. Kaushal H., Jain, V. K., & Kar, S., : ‘Free space optical communication’. New Delhi: Springer India. pp. 60, 2017.
XVIII. N. Kumar and A. K. Rana. : ‘Impact of various parameters on the performance of free space optics communication system’. Optik. Vol. 124(22), pp. 5774–5776, 2013. 10.1016/j.ijleo.2013.04.062
XIX. K. Rammprasath and S. Prince. : ‘Analyzing the cloud attenuation on the performance of free space optical communi- cation’. Proceedings of the 2nd International Conference on Communication and Signal Processing (ICCSP ’13), Melmaruvathur, India, pp. 791–794, 2013. 10.1109/iccsp.2013.6577165
XX. Mohsen D. E., Abbas E. M., & Abdulwahid M. M. : ‘Design and Implementation of DWDM-FSO system for Tbps data rates with different atmospheric Attenuation’. International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). IEEE. pp. 1-7, 2022. 10.1109/HORA55278.2022.9799974
XXI. Mohsen D. E., Abbas E. M., & Abdulwahid M. M., : ‘Performance Analysis of OWC System based (S-2-S) Connection with Different Modulation Encoding’. International Journal of Intelligent Systems and Applications in Engineering. Vol.11(4s), pp. 400-408. 2023. https://ijisae.org/index.php/IJISAE/article/view/2679
XXII. M. Q. Mohammed. : ‘HARNESSING CLOUD OF THING AND FOG COMPUTING IN IRAQ: ADMINISTRATIVE INFORMATICS SUSTAINABILITY’. Journal of Mechanics of Continua and Mathematical Sciences. Vol. 19(2), pp. 66–78, 2024. 10.26782/jmcms.2024.02.00004
XXIII. M. S. Jameel, Y. S. Mezaal, and D. C. Atilla. : ‘Miniaturized coplanar waveguide-fed UWB Antenna for wireless applications’. Symmetry. Vol. 15(3), pp. 633, 2023. 10.3390/sym15030633
XXIV. Majumdar A. K., Ricklin J. C., Leitgeb E., Gebhart M., & Birnbacher U., : ‘Optical networks, last mile access and applications’. Free-Space Laser Communications: Principles and Advances. Springer, New York, NY. Vol. 2, pp. 273-302. 10.1007/978-0-387-28677-8_6
XXV. Shamsi Z. : ‘Duplex Baseband Signal Transmission Over Free Space Optical Link Employing Carrier Reuse’. (2022). 10.21203/rs.3.rs-2246841/v1
XXVI. Shareef, M. S. et al., : ‘Cloud of Things and fog computing in Iraq: Potential applications and sustainability’. Heritage and Sustainable Development. Vol. 5(2), pp. 339–350, 2023. 10.37868/hsd.v5i2.279
XXVII. S. A. Abdulameer, et al., : ‘Security Readiness in Iraq: Role of the Human Rights Activists’. International Journal of Cyber Criminology. Vol. 16,(2) pp. 1–14, 2022. 10.5281/zenodo.4766563
XXVIII. S. Roshani et al., : ‘Design of a compact quad-channel microstrip diplexer for L and S band applications’. Micromachines (Basel). Vol. 14(3), 2023. 10.3390/mi14030553
XXIX. Roshani S., Yahya S. I., Mezaal Y. S., Chaudhary M. A., Al-Hilali A. A., Ghadi, Y. Y. Ghadi & Roshani S., : ‘A compact filtering coupler with unwanted harmonic rejection using LC composite lines for communication systems applications’. Systems, Vol. 11(1), pp. 14, 2022. 10.3390/systems11010014
XXX. Tarrad K. M., : ‘Cybercrime Challenges in Iraqi Academia: Creating Digital Awareness for Preventing Cybercrimes’. International Journal of Cyber Criminology. Vol. 16(2), pp. 1–14, 2022. 10.5281/zenodo.4766564
XXXI. Y. S. Mezaal, Hammood D. A., & Ali, M. H., : ‘OTP encryption enhancement based on logical operations’. Sixth International Conference on Digital Information Processing and Communications (ICDIPC). IEEE. pp. 109-112, 2016. 10.1109/ICDIPC.2016.7470801
XXXII. Y. S. Mezaal and H. T. Eyyuboglu. : ‘A new narrow band dual-mode microstrip slotted patch bandpass filter design based on fractal geometry’. 7th International Conference on Computing and Convergence Technology (ICCCT), Seoul, Korea (South). pp. 1180-1184. 2012.
XXXIII. Y. S. Mezaal, H. H. Saleh, and H. Al-Saedi. : ‘New compact microstrip filters based on quasi fractal resonator’. Advanced Electromagnetics. Vol. 7(4), pp. 93-102, 2018. 10.7716/aem.v7i4.883
XXXIV. Y. S. Mezaal and S. F. Abdulkareem. : ‘New microstrip antenna based on quasi-fractal geometry for recent wireless systems’. 26th Signal Processing and Communications Applications Conference (SIU), 2018: IEEE. pp. 1-4. 10.1109/SIU.2018.8404727
XXXV. Yahya S. I. et al., : ‘A New Design Method for Class-E Power Amplifiers Using Artificial Intelligence Modeling for Wireless Power Transfer Applications’. Electronics. Vol. 11(21), 3608, 2022. 10.3390/electronics11213608
XXXVI. Y. S. Mezaal, and J. K. Ali. : ‘A new design of dual band microstrip bandpass filter based on Peano fractal geometry: Design and simulation results’. 13th Mediterranean Microwave Symposium (MMS). Saida, Lebanon, 2013, pp. 1-4, 10.1109/MMS.2013.6663140.
XXXVII. Y. S. Mezaal et al., : ‘Investigation of PAPR reduction technique using TRC-SLM integration’. Int. J. Simul. Syst. Sci. Technol (2019). 10.5013/IJSSST.a.19.06.34
XXXVIII. Y. S. Mezaal, Eyyuboglu H. T., & Ali J. K., : ‘Wide bandpass and narrow bandstop microstrip filters based on Hilbert fractal geometry: design and simulation results’. PloS one. Vol. 9(12), e115412, 2014. 10.1371/journal.pone.0115412
XXXIX. Zaal R. M., Mustafa F. M., Abbas E. I., Mosleh M. F., & Abdulwahid M. M., : ‘Real measurement of optimal access point localizations’. IOP Conference Series: Materials Science and Engineering. IOP Publishing.Vol. 881(1), 012119. 10.1088/1757-899X/881/1/012119

View Download

CYCLONE STABILITY PARAMETER: ITS NUMERICAL VALUE AND SIGNIFICANCE IN THE PERSPECTIVE OF TRACK DETERMINATION

Authors:

Indrajit Ghosh, Sukhen Das, Nabajit Chakravarty

DOI NO:

https://doi.org/10.26782/jmcms.2024.06.00008

Abstract:

The study of the dynamics of tropical cyclones constitutes a major portion of the curriculum for atmospheric science throughout the world. This is due to its enormous significance on the coastal human civilization all over the world. The increase in sea surface temperature globally has led to an increase in the frequency of tropical cyclones. As many as ten deadly tropical cyclones have hit the Coromandel Coast of the Bay of Bengal Coastline after generating depressions from the Bay of Bengal in the last decade. The most challenging part lies in the early detection of tropical depressions in the ocean bed, the consequent intensity prediction of the generated tropical cyclone, and the forecasting of the resulting path of propagation of the cyclone in landmass. For these a detailed analytic study of the related cyclone dynamics governing equations, their corresponding solution, propounding of the cyclone analytic solution model, and estimation of some critical parameters based on real cyclone data for the validation of the analytic model is of utmost importance. Radio Sonde Radio Wind (RSRW) data analysis for 5 cyclones and subsequent Cyclone Stability Parameter (CSP)determination, simplification of the complicated expression of  and its subsequent significance is the main work of this paper. The  is the representative of the entire analysis of the governing equations of tropical cyclones in the applicable coordinate system of a previously performed important work. So this work is also a validation of the previously performed analytic work. We have also analytically simplified the expression of  through some approximations and chalked out a more lucid expression which is a function of  only. This work effectively unites analytic and numerical performances for more effective prediction of tropical cyclone path of propagation in landmass after their formation in tropical oceans.

Keywords:

Cyclone Stability Parameter (CSP),Cross Radial Velocity,Radio Sonde Radio Wind (RSRW),Track Determination,Transverse Velocity,Tropical Cyclone,

Refference:

I. Baisya H., Pattanaik S., Chakraborty T., : ‘A coupled modeling approach to understand ocean coupling and energetics of tropical cyclones in the Bay of Bengal basin’. J. Atmos. Res., Vol. 246, 105902, 2020 10.1016/j.atmosres.2020.105092
II. Emanuel K., : ‘Increasing destructiveness of tropical cyclones over the past 30 years’. Nature, Vol, 436, pp. 686-688, 2005 10.1038/nature03906
III. Elsberry R. L., Jordon M. S., Vitart F., : ‘Predictability of tropical cyclone events on inter seasonal time scales with the ECMWF monthly forecast model’. Asia. Pac. J. Atmos. Sci., Vol. 46, pp. 135-153, 2010 10.1007/s13143-010-0013-4
IV. Ghosh I., Chakravarty N., : ‘Tropical cyclones: expressions for velocity components and stability parameter’. J. Nat. Haz., Vol. 94, pp. 1293-1304, 2018. 10.1007/s11069-018-3477-7
V. Ghosh I., Das S., Chakravarty N., : ‘A review on tropical cyclones’. Journal of Mechanics of Continua and Mathematical Sciences, Vol. 16(12), pp. 20-48, 2021. 10.26782/jmcms.2021.12.00003
VI. Ghosh I., Das S., Chakravarty N.,: ‘RSRW Data, CSP and cyclone track prediction’. Journal of Mechanics of Continua and Mathematical Sciences, Vol. 17(2), pp. 41-51, 2022 10.26782/jmcms.2022.02.00005
VII. Ghosh I., Das S., Chakravarty N., : ‘Anomaly temperature in the genesis of tropical cyclone’. J. Nat. Haz., Vol. 114, pp. 1477-1503, 2022. 10.1007/s11069-022-05434-4
VIII. Jung B. J., Kim H. M., Kim Y. H., Jeon E., H., Kim K. H., : ‘Observation system experiments for typhoon Jangmi (200815); observed during T-Parc’. Asia. Pac. J. Atmos. Sci, Vol. 46, pp. 305-316, 2010. 10.1007/s1314: 010-1007-y
IX. Köhle M. P., Promper C., Glade T., : ‘A common methodology for risk assessment and mapping of climate change related hazards- implications for climate change adaptation policies’. MDPI Article Climate, Vol. 4(1), 8, 2016. 10.3390/cli4010008
X. Liu L., : ‘Tropical Cyclones, Oceanic Circulation and Climate, Climate Change and Variability, Suzanne Simard (Ed.), ISBN: 978-953-307-144-2, InTech, 2010
XI. http://www.intechopen.com/books/c change-and-variability/tropical-cyclones-oceanic-circulation-and- climate
XII. Lala S. et al., : ‘Mathematical explanation of earlier dissipation of the energy of tilted cyclone’. J. Climatol. Weather. Forecast., Vol. 2(2), pp. 1-6, 2014. 10.4172/2332-2594.1000115
XIII. Li L., Xuyang G., : ‘Intensity change of Noru during binary tropical cyclone interaction’. Asia. Pac. J. Atmos. Sci., Vol. 57, pp. 135-147, 2021. 10.1007/s13143-020-00181-7
XIV. Nott J. F., : ‘Intensity of prehistoric tropical cyclones’. J. Geophys. Res. Vo. 108(D7),4212, 2003. 10.1029/2002JD002726
XV. Nelson S. A., : ‘Tropical Cyclones (Hurricanes)’. 2014. http://tulane.edu/sanelson/New_Orleans__and_Hurricanes/tropical_ cyclones.htm
XVI. Posada R., Ortega G. E., Sanchez J. L., Lopez L., : ‘Verification of the MM5 model using radiosonde data from Madrid-Barajas Airport’. J. Atmos. Res., Vol. 122, pp. 174-182, 2012 10.1016/j.atmosres.2012.10.
XVII. Ritchie I., Vigh J. L., : ‘Tropical cyclone structure and intensity change: Inner core impacts – Rapporteur Report, Topic 1.2’. 7th International Workshop on Tropical Cyclones (IWTC-VII), France. 10.13140/2.1.1825.8247
XVIII. Rezapour M., : ‘A new methodology of classification of tropical cyclones: the importance of rainfall’. PhD Thesis, The University of Queensland, Australia. 2015.
XIX. Sikka D. R., : ‘Major advances in understanding and prediction of tropical cyclones over north Indian Ocean : A Perspective’. Mausam , Vol. 57(1), pp. 165-196, 2006.
XX. Shevtsov B. M., Ekaterina P., Holzworth R. H., : ‘Relation of tropical cyclone structure with thunder storm activity’. XXI International Symposium on Atmospheric and Ocean Optics, Tomsk, Russian Federation. 2015. 10.1117/12.2203348
XXI. Stern D. P., Vigh J. L., Nolan D., S., Zhang F., : ‘Revisiting the relationship between eyewall contraction and intensification’. J. Atmos. Sci., Vol. 72(4), pp. 1283-1306, 2015. 10.1175/JAS-D-14-0261.1
XXII. Sheasarani A., Khamiki A. K., Bidhokti A. A. A., Azadi M., : ‘Sensitivity analysis of the numerical aspect of the SWAN for the tropical cyclone wave simulations in the Gulf of Oman’. Arab. J. Geosci., Vol. 13, 692. 2020. 10.1007/s12517-020-05629-8
XXIII. Spiridonov V., Curic M., Sladic N., Jakimovski B., : ‘Novel thunderstorms alert system (NOTHAS)’. Asia. Pac. J. Atmos. Sci., Vol. 57, pp. 479-498, 2020. 10.1007/s13143-020-00210-5
XXIV. Tapiador F. J., : ‘Hurricane footprints in global climate models’. Entropy, Vol. 10, pp. 613-620, 2008. 10.3390/e10040613
XXV. Zehnder J. A., : ‘Tropical cyclone’. 2020. https://www.britannica.com/science/tropical-cyclone

View Download