Archive

ENERGY CONSERVATION BY NEW ENERGY-EFFICIENT MOTORS AND CONFIDENCE INTERVAL FORECASTS USING STATISTICAL TECHNIQUES

Authors:

Murtaza Ali Khooharo, Muhammad Mujtaba Shaikh, Ashfaque Ahmed Hashmani

DOI NO:

https://doi.org/10.26782/jmcms.2023.05.00003

Abstract:

As the most energy-intensive machines on the planet, induction motors are the subject of an ongoing study to increase their effectiveness. In this respect, new energy-efficient motors (NEEMs) are being developed. For increasing energy conservation, motors with efficiencies considerably higher than traditional standard motors (TSMs) and energy-efficient motors (EEMs) have been suggested. NEEMs have the potential to save a significant quantity of energy as well as operating costs. A comparative study is conducted in this paper to show how much energy and cost can be saved if TSMs in various industries in Pakistan are replaced with NEEMs, as well as their payback period. A data sample of 23 motors of different ratings has been collected in this pilot study and 90 percent confidence limits are calculated using a t-distribution. The energy conservation benefits of the NEEMs are found encouraging

Keywords:

Energy-efficient motors,energy conservation,payback,cost saving,energy saving,

Refference:

I. Boglietti, A. Cavagnino, M. Lazzari, and M. Pastorelli, “International standards for the induction motor efficiency evaluation: a critical analysis of the stray-load loss determination,” in 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, 2003., Oct. 2003, vol. 2, pp. 841–848 vol.2. doi: 10.1109/IAS.2003.1257626.
II. De Almeida, J. Fong, C. U. Brunner, R. Werle, and M. Van Werkhoven, “New technology trends and policy needs in energy efficient motor systems – A major opportunity for energy and carbon savings,” Renew. Sustain. Energy Rev., vol. 115, p. 109384, Nov. 2019, doi: 10.1016/j.rser.2019.109384.

III. J. Memon and M. M. Shaikh, “Confidence bounds for energy conservation in electric motors: An economical solution using statistical techniques,” Energy, vol. 109, pp. 592–601, Aug. 2016, doi: 10.1016/j.energy.2016.05.014.

IV. T. De Almeida, F. Ferreira, D. ISR, and E. Electrotecnica, “Efficiency testing of electric induction motors,” ISR Dep Eng Electron. Univ. Coimbra Polo, vol. 2, p. 3030, 1997.

V. T. de Almeida, F. J. T. E. Ferreira, and G. Baoming, “Beyond Induction Motors—Technology Trends to Move Up Efficiency,” IEEE Trans. Ind. Appl., vol. 50, no. 3, pp. 2103–2114, May 2014, doi: 10.1109/TIA.2013.2288425.

VI. Energy Efficient Motor Market by Efficiency Level,Type, Application | COVID-19 Impact Analysis | Marketsand Markets TM.” https://www.marketsandmarkets.com/Market-Reports/energy-efficient-motor-163.html (accessed Dec. 24, 2021).

VII. Energy-Efficient Motors: Are They Worth the Cost?,” Facilitiesnet. https://www.facilitiesnet.com/powercommunication/article/Energy-Efficient-Motors-Are-They-Worth-the-Cost–9594 (accessed Dec. 24, 2021).

VIII. F. Abrahamsen, F. Blaabjerg, J. K. Pedersen, P. Z. Grabowski, and P. Thogersen, “On the energy optimized control of standard and high-efficiency induction motors in CT and HVAC applications,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 822–831, Jul. 1998, doi: 10.1109/28.703985.

IX. G. Pellegrino, A. Vagati, B. Boazzo, and P. Guglielmi, “Comparison of Induction and PM Synchronous Motor Drives for EV Application Including Design Examples,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2322–2332, Nov. 2012, doi: 10.1109/TIA.2012.2227092.

X. Md. A. Rahman, “History of interior permanent magnet motors [History],” IEEE Ind. Appl. Mag., vol. 19, no. 1, pp. 10–15, Jan. 2013, doi: 10.1109/MIAS.2012.2221996.

XI. Motor Comparison: Standard vs. Energy Efficient,” Facilitiesnet. https://www.facilitiesnet.com/powercommunication/article/Motor-Comparison-Standard-vs-Energy-Efficient–9591 (accessed Dec. 24, 2021).

XII. Motor Efficiency – an overview | ScienceDirect Topics.” https://www.sciencedirect.com/topics/engineering/motor-efficiency (accessed Sep. 23, 2021).

XIII. Motors and Generators.” https://www.nema.org/standards/view/motors-and-generators (accessed Dec. 24, 2021).
XIV. N. Corporation, “IPM (Interior Permanent Magnet),” Nidec Corporation. https://www.nidec.com/en/technology/motor/glossary/000/0040/ (accessed Feb. 03, 2022).

XV. National Energy Efficiency & Conservation Authority.” https://neeca.gov.pk/ (accessed Dec. 24, 2021).

XVI. NEMA MG 1 Motor and Generators Standard Now Available for Free Digital Download.” https://www.nema.org/news-trends/view/nema-mg-1-motor-and-generators-standard-now-available-for-free-digital-download (accessed Dec. 24, 2021).

XVII. Pakistan Launches First Efficiency Policy for Electric Motors,” CLASP. https://www.clasp.ngo/updates/pakistan-launches-first-efficiency-policy-for-electric-motors/ (accessed Dec. 24, 2021). TECHNICAL NOTE No. 32 IPM TECHNICAL NOTE,” p. 74.

XVIII. R. Mugalimov and A. Mugalimova, “Technology for Reconstruction of traditional induction motors to energy saving variants,” Russ. Internet J. Ind. Eng., no. 1, Art. no. 1, Sep. 2013, doi: 10.24892/RIJIE/20130109.

XIX. R. Turconi, A. Boldrin, and T. Astrup, “Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations,” Renew. Sustain. Energy Rev., vol. 28, pp. 555–565, Dec. 2013, doi: 10.1016/j.rser.2013.08.013.

XX. S. Bolognani, S. Calligaro, R. Petrella, and F. Pogni, “Flux-weakening in IPM motor drives: Comparison of state-of-art algorithms and a novel proposal for controller design,” in Proceedings of the 2011 14th European Conference on Power Electronics and Applications, Aug. 2011, pp. 1–11.

XXI. S. Hu, D. Yan, S. Guo, Y. Cui, and B. Dong, “A survey on energy consumption and energy usage behavior of households and residential building in urban China,” Energy Build., vol. 148, pp. 366–378, Aug. 2017, doi: 10.1016/j.enbuild.2017.03.064.

XXII. T. Ohnishi and N. Takahashi, “Optimal design of efficient IPM motor using finite element method,” IEEE Trans. Magn., vol. 36, no. 5, pp. 3537–3539, Sep. 2000, doi: 10.1109/20.908891.

XXIII. Z. Wu and X. Xia, “Optimal switching renewable energy system for demand side management,” Sol. Energy, vol. 114, pp. 278–288, Apr. 2015, doi: 10.1016/j.solener.2015.02.001.

XXIV. Z. Zhang, “Analysis of Reluctance Torque in Interior Permanent Magnet Synchronous Machines With Fractional Slot Concentrated Windings,” in 2019 4th International Conference on Intelligent Green Building and Smart Grid (IGBSG), Sep. 2019, pp. 158–163. doi: 10.1109/IGBSG.2019.8886289.

View Download

MIXED CONVECTION ANALYSIS OF HYBRID NANOFLUID IN A LID-DRIVEN CAVITY WITH A HOT BLOCK INSIDE

Authors:

K. Bouaraour, D. Lalmi

DOI NO:

https://doi.org/10.26782/jmcms.2023.06.00001

Abstract:

The purpose of this study is the investigation of heat transfer and fluid flow around a heated solid block inside a lid-driven cavity filled with hybrid TiO2-Cu/water nanofluid. The considered geometry is a two-dimensional cavity with an aspect ratio of 5. The upper wall translates with uniform velocity Ulid. The solid block attached to the bottom wall of the cavity is maintained at a high temperature compared to the temperature of the upper and lower walls, whereas the other walls are kept insulated. The hybrid nanofluid flow is assumed to be Newtonian, laminar, and incompressible. The effect of the Richardson number is considered by fixing the Reynolds number to 100, and by varying the Grashof number from 102 to 104. Volume fractions for both nanoparticles are varied from 0% to 8%. Results are shown in terms of streamlines, isotherms, and profiles of the average Nusselt number. Numerical results show that clockwise and counterclockwise cells are generated within the rectangular enclosure due to the combined effects of natural and forced convection. Furthermore, increasing the Richardson number from Ri = 0.01 to Ri = 1, which results from an increase in the buoyancy effect, leads to an increase in the Nusselt number of about 4.5%.  Moreover, for each Richardson number, an increase of 8% in nanoparticles volume fraction leads to an enhancement of the heat transfer rate by about 9.8%.

Keywords:

Nanoparticles,Richardson number,rectangular cavity,Nusselt number,

Refference:

I. Aljabair, S., Ekaid, A. L., Hasan ibrahim, S. and Alesbe, I : MIXED CONVECTION IN SINUSOIDAL LID- DRIVEN CAVITY WITH NON-UNIFORM TEMPERATURE DISTRIBUTION ON THE WALL UTILIZING NANOFLUID. Heliyon 7, e06907, 2021.
II. Bakar, N. A., Karimipour, A. and Roslan, R. : EFFECT OF MAGNETIC FIELD ON MIXED CONVECTION HEAT TRANSFER IN A LID-DRIVEN SQUARE CAVITY. Journal of Thermodynamics, Article ID 3487182, 2016. 10.1155/2016/3487182.
III. Bakar, N. A., Roslan, R., Karimipour, A. and Hashim, I. : MIXED CONVECTION IN LID-DRIVEN CAVITY WITH INCLINED MAGNETIC FIELD. Sains Malaysiana, 48(2), pp 451–471, 2019. 10.17576/jsm-2019-4802-24.

IV. Brinkman, H. C. : THE VISCOSITY OF CONCENTRATED SUSPENSIONS AND SOLUTIONS. Journal of Chemical Physics, 3, pp 571–581, 1952. 10.1063/1.1700493.
V. Dumon, A., Allery, C. and Ammar, A. : SIMULATION OF HEAT AND MASS TRANSPORT IN A SQUARE LID-DRIVEN CAVITY WITH PROPER GENERALIZED DECOMPOSITION (PGD). Numerical Heat Transfer, Part B: Fundamentals An International Journal of Computation and Methodology, 63(1), pp 18-43, 2013. 10.1080/10407790.2012.724991.
VI. Geridonmez, B. P. and Oztop, H. F. : ENTROPY GENERATION DUE TO MAGNETO-CONVECTION OF A HYBRID NANOFLUID IN THE PRESENCE OF A WAVY CONDUCTING WALL. Mathematics, 10(24), 4663, 2022. 10.3390/math10244663.
VII. Goodarzi, M., D’orazio, A., Keshavarzi, A., Mousavi, S. and Karimipour, A. : DEVELOP THE NANO-SCALE METHOD OF LATTICE BOLTZMANN TO PREDICT THE FLUID FLOW AND HEAT TRANSFER OF AIR IN THE INCLINED LID DRIVEN CAVITY WITH A LARGE HEAT SOURCE INSIDE, TWO CASE STUDIES: PURE NATURAL CONVECTION & MIXED CONVECTION. Physica A, 509, pp 210–233, 2018. 10.1016/j.physa.2018.06.013.
VIII. Incropera, F. P. and De witt, D. P. (2002), Introduction to Heat Transfer, Wiley 4th edition, New York.
IX. Karimipour, A., Hemmat esfe, M., Reza Safaei, M., Toghrai, D., Jafari, S. and Kazi, S. N. : MIXED CONVECTION OF COPPER–WATER NANOFLUID IN A SHALLOW INCLINED LID DRIVEN CAVITY USING THE LATTICE BOLTZMANN METHOD. Physica A, 402, pp 150–168, 2014. 10.1016/j.physa.2014.01.057.
X. Khanafer, K. and Vafai, K. : A CRITICAL SYNTHESIS OF THERMOPHYSICAL CHARACTERISTICS OF NANOFLUIDS, Int. J. Heat Mass Trans., 54, pp 4410-4442, 2012. 10.1016/j.ijheatmasstransfer.2011.04.048.
XI. Korei, Z. and Benissaad, S. : ENTROPY GENERATION OF A HYBRID NANOFLUID ON MHD MIXED CONVECTION IS A LID-DRIVEN CAVITY WITH PARTIAL HEATING HAVING TWO ROUNDED CORNERS. E3S Web of Conferences 321, 02004, 2021. 10.1051/e3sconf/202132102004
XII. Kosti, S. and Rathore, V. S. : NUMERICAL STUDY OF LID DRIVEN CAVITY AT DIFFERENT REYNOLDS NUMBER. Trends in Mechanical Engineering and Technology, 5(3), pp 1-5, 2015.
XIII. Maxwell, J. C. (1954), : A Treatise on Electricity and Magnetism, Unabridged, Dover.

XIV. Nahak, P., Triveni, M. K. and Panua, R. : NUMERICAL INVESTIGATION OF MIXED CONVECTION IN A LID-DRIVEN TRIANGULAR CAVITY WITH A CIRCULAR CYLINDER USING ANN MODELING. International Journal of Heat and Technology, 35(4), pp 903-918, 2017. 10.18280/ijht.350427.
XV. Pashaie, P., Jafari, M., Baseri, H. and Farhadi, M. : NUSSELT NUMBER ESTIMATION ALONG A WAVY WALL IN AN INCLINED LID-DRIVEN CAVITY USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS). IJE TRANSACTIONS A: Basics, 26(4), pp 383-392, 2013.
XVI. Patankar, S. V. (1980), : Numerical Heat Transfer and Fluid Flow, Mac Graw Hill, New York.
XVII. Rashidi, M. M., Sadri, M. and Sheremet, M. A. : NUMERICAL SIMULATION OF HYBRID NANOFLUID MIXED CONVECTION IN A LID-DRIVEN SQUARE CAVITY WITH MAGNETIC FIELD USING HIGH-ORDER COMPACT SCHEME. Nanomaterials, 11(9), 2250, 2021.
XVIII. Saha, L. K., Somadder, M. C. and Salah uddin, K. M. : MIXED CONVECTION HEAT TRANSFER IN A LID DRIVEN CAVITY WITH WAVY BOTTOM SURFACE. American Journal of Applied Mathematics, 1(5), pp 92-101, 2013.
XIX. Saidur, R., Leong, K. Y. and Mohammad, H. A. : A REVIEW ON APPLICATIONS AND CHALLENGES OF NANOFLUIDS. Renew. Sustain. Energy. Rev.,15, pp 1646-1668, 2011.
XX. Sarlak, R., Yousefzadeh, S., Akbari, O. A., Toghraie, D., Sarlak, S. and Assadi, F. : THE INVESTIGATION OF SIMULTANEOUS HEAT TRANSFER OF WATER/AL2O3 NANOFLUID IN A CLOSE ENCLOSURE BY APPLYING HOMOGENEOUS MAGNETIC FIELD. International Journal of Mechanical Sciences, 133, pp 674-688, 2017. 10.1016/j.ijmecsci.2017.09.035.
XXI. Tuckerman, D. B. and. Pease, R. F. W. : HIGH PERFORMANCE HEAT SINKING FOR VLSI. IEEE Electron Dev. Letters., 2, pp 126- 129, 1981.
XXII. Zahan, I., Nasrin, R. and Alim, M. A. : MIXED CONVECTIVE HYBRID NANOFLUID FLOW IN LID-DRIVEN UNDULATED CAVITY: EFFECT OF MHD AND JOULE HEATING. Journal of Naval Architecture and Marine Engineering, 16, pp 109-126, 2019. 10.3329/jname.v16i2.40585.

View Download

OPTICAL 4:1 MULTIPLEXER USING SAGNAC SWITCHES

Authors:

Dilip Kumar Gayen, Arunava Bhattacharyya

DOI NO:

https://doi.org/10.26782/jmcms.2023.06.00002

Abstract:

This paper presents the design and implementation of an Optical 4:1 Multiplexer using Sagnac Switches as Terahertz Optical Asymmetric Demultiplexers (TOADs). Optical multiplexers play a crucial role in modern communication systems by combining multiple signals onto a single optical channel. The proposed multiplexer architecture leverages the benefits of Sagnac Switches, such as low insertion loss, high extinction ratio, and low crosstalk, along with TOADs to achieve efficient signal routing and demultiplexing. The design is evaluated through simulations, demonstrating its performance in terms of insertion loss, extinction ratio, and crosstalk. The experimental validation of the multiplexer verifies its effectiveness in real-world scenarios. The Optical 4:1 Multiplexer using Sagnac Switches as TOADs offers a promising solution for optical communication networks, enabling efficient signal multiplexing and demultiplexing while maintaining high data integrity and low signal degradation.

Keywords:

Optical communication,multiplexer,Sagnac Switches,Terahertz Optical Asymmetric Demultiplexers (TOADs),signal routing,signal demultiplexing,insertion loss,extinction ratio,crosstalk,optical networks,

Refference:

I. C. S. Pittala, V. Vijay and Reddy, B.N.K. : “1-Bit FinFET Carry Cells for Low Voltage High-Speed Digital Signal Processing Applications”, Silicon 15, 713–724, 2023. 10.1007/s12633-022-02016-8.
II. D. K. Gayen. “Optical Multiplexer”. J. Mech. Cont. & Math. Sci., Vol.-18, No.-03, March (2023) pp 32-42. 10.26782/jmcms.2023.03.00003
III. El-Hageen, Hazem M., Alatwi, Aadel M. and Zaki Rashed, Ahmed Nabih. : “High-speed signal processing and wideband optical semiconductor amplifier in the optical communication systems”, Journal of Optical Communications, pp. 000010151520200070, 2020. 10.1515/joc-2020-0070.
IV. H. Furukawa et al., : “Demonstration of 10 Gbit Ethernet/Optical-Packet Converter for IP Over Optical Packet Switching Network.” Journal of Lightwave Technology, vol. 27, no. 13, pp. 2379-2380, July 1, 2009. 10.1109/JLT.2008.2010063.
V. I. S. Choi, Jongseon Park, Hoon Jeong, Ji Won Kim, Min Yong Jeon, and Hong-Seok Seo. : “Fabrication of 4 × 1 signal combiner for high-power lasers using hydrofluoric acid,” Opt. Express 26, 30667-30677, 2018. 10.1364/OE.26.030667
VI. J. H. Huh, H. Homma, H. Nakayama and Y. Maeda. : “All optical switching triode based on cross-gain modulation in semiconductor optical amplifier,” Photonics in Switching, San Francisco, CA, USA, pp. 73-74, 2007.
VII. J. M. Tang, P. S. Spencer, P. Rees and K. A. Shore. : “Pump-power dependence of transparency characteristics in semiconductor optical amplifiers,” IEEE Journal of Quantum Electronics, vol. 36, no. 12, pp. 1462-1467, Dec. 2000.
VIII. J. P. Sokoloff, P. R. Prucnal, I. Glesk and M. Kane. : “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photonics Technology Letters, vol. 5, no. 7, pp. 787-790, July 1993.
IX. K. Christodoulopoulos, I. Tomkos and E. Varvarigos. : “Dynamic bandwidth allocation in flexible OFDM-based networks,” Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Los Angeles, CA, USA, 2011, pp. 1-3 2011.
X. Lei Xu, I. Glesk, V. Baby and P. R. Prucnal. : “All-optical wavelength conversion using SOA at nearly symmetric position in a fiber-based sagnac interferometric loop,” IEEE Photonics Technology Letters, vol. 16, no. 2, pp. 539-541, Feb. 2004.
XI. M. F. C. Stephens, M. Asghari, R. V. Penty and I. H. White. : “Demonstration of ultrafast all-optical wavelength conversion utilizing birefringence in semiconductor optical amplifiers,” IEEE Photonics Technology Letters, vol. 9, no. 4, pp. 449-451, April 1997.

XII. N. Bai, Ezra Ip, Yue-Kai Huang, Eduardo Mateo, Fatih Yaman, Ming-Jun Li, Scott Bickham, Sergey Ten, Jesús Liñares, Carlos Montero, Vicente Moreno, Xesús Prieto, Vincent Tse, Kit Man Chung, Alan Pak Tao Lau, Hwa-Yaw Tam, Chao Lu, Yanhua Luo, Gang-Ding Peng, Guifang Li, and Ting Wang. : “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express 20, 2668-2680, 2012.
XIII. S. Soysouvanh, Phongsanam, P., Mitatha, S. et al. : “Ultrafast all-optical ALU operation using a soliton control within the cascaded InGaAsP/InP microring circuits.” Microsyst Technol 25, 431–440, 2019.
XIV. V. M. Menon et al. : “All-optical wavelength conversion using a regrowth-free monolithically integrated Sagnac interferometer,” IEEE Photonics Technology Letters, vol. 15, no. 2, pp. 254-256, Feb. 2003.
XV. V. Sasikala, Chitra, K. : “All optical switching and associated technologies: a review.” J Opt 47, 307–317, 2018.
XVI. Y. Liu, E. Tangdiongga, Z. Li, Shaoxian Zhang, Huug de Waardt, G. D. Khoe, and H. J. S. Dorren. : “Error-Free All-Optical Wavelength Conversion at 160 Gb/s Using a Semiconductor Optical Amplifier and an Optical Bandpass Filter,” J. Lightwave Technol. 24, 230-,2006.
XVII. Y. Xiao, F. Brunet, M. Kanskar, M. Faucher, A. Wetter, and N. Holehouse. : “1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks,” Opt. Express 20, 3296-3301, 2012.

View Download

GENERAL ANALYTICAL EXPRESSIONS FOR DEFLECTION AND SLOPE OF EULER-BERNOULLI BEAM UNDER DIFFERENT TYPES OF LOADS AND SUPPORTS

Authors:

Imran Ali Panhwar, Muhammad Mujtaba Shaikh, Rabinder Kumar

DOI NO:

https://doi.org/10.26782/jmcms.2023.06.00003

Abstract:

In this research paper, we solve the Euler-Bernoulli beam (EBB) differential equations by taking the general boundary conditions. Instead of finding a solution for the EBB model for a particular load and its particular boundary conditions, we derive the general analytical solution with general boundary conditions by using techniques of integration. The proposed general analytical solutions are neither load specific nor dependent on specific boundary conditions but can be used for any load and any boundary condition without having to integrate again and again. We have taken a general polynomial load function with general boundary conditions, and get the general analytical solution for the deflection and slope parameters of EBB. We find the direct solution for uniform distributed load and linearly varying load for a fixed beam.

Keywords:

Euler Bernoulli Beam,General analytical solution,Deflection,Slope,

Refference:

I. Barari, A., Kaliji, H. D., Ghadimi, M., & Domairry, G. (2011). : “Non-linear vibration of Euler-Bernoulli beams.” Latin American Journal of Solids and Structures, 8, 139-148. 10.1590/S1679-78252011000200002.
II. Beck, A. T., & da Silva Jr, C. R. (2011). “Timoshenko versus Euler beam theory: Pitfalls of a deterministic approach.” Structural Safety, 33(1), 19-25. 10.1016/j.strusafe.2010.04.006.
III. Bokhari, A. H., Mahomed, F. M., & Zaman, F. D. (2010). “Symmetries and integrability of a fourth-order Euler–Bernoulli beam equation.” Journal of Mathematical Physics, 51(5), 053517. 10.1063/1.3377045.
IV. Di Paola, M., Heuer, R., & Pirrotta, A. (2013). “Fractional visco-elastic Euler–Bernoulli beam.” International Journal of Solids and Structures, 50(22-23), 3505-3510. 10.1016/j.ijsolstr.2013.06.010.

V. Hafeezullah Channa, Muhammad Mujtaba Shaikh, and Kamran Malik (2022). “GENERAL ANALYTICAL SOLUTION OF AN ELASTIC BEAM UNDER VARYING LOADS WITH VALIDATION”, Journal of Mechanics of Continua and Mathematical Sciences, 17 (11): 54-62. 10.26782/jmcms.2022.11.00004.
VI. Malik, K., Shaikh, A. W., & Shaikh, M. M. “AN EFFICIENT FINITE DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION OF TIMOSHENKO BEAM MODEL.” Journal of Mechanics of Continua and Mathematical Sciences, 16(5):76-88. 10.26782/jmcms.2021.05.00007.
VII. Malik, K., Shaikh, M. M., & Shaikh, A. W (2021). “ON EXACT ANALYTICAL SOLUTIONS OF THE TIMOSHENKO BEAM MODEL UNDER UNIFORM AND VARIABLE LOADS.” Journal of Mechanics of Continua and Mathematical Sciences, 16 (5): 66-75. 10.26782/jmcms.2021.05.00006
VIII. Manoli, C. K., Papatzani, S., & Mouzakis, D. E. (2022). “Exploring the Limits of Euler–Bernoulli Theory in Micromechanics.” Axioms, 11(3), 142. 10.3390/axioms11030142.
IX. Nguyen, N. T., Kim, N. I., & Lee, J. (2015). “Mixed finite element analysis of nonlocal Euler–Bernoulli nanobeams.” Finite Elements in Analysis and Design, 106, 65-72. 10.1016/j.finel.2015.07.012.
X. Park, S. K., & Gao, X. L. (2006). “Bernoulli–Euler beam model based on a modified couple stress theory.” Journal of Micromechanics and Microengineering, 16(11), 2355. 10.1088/0960-1317/16/11/015
XI. Pisano, A. A., Fuschi, P., & Polizzotto, C. (2021). “Euler–Bernoulli elastic beam models of Eringen’s differential nonlocal type revisited within a $$\mathbf {C}^{0}-$$ C 0-continuous displacement framework.” Meccanica, 56(9), 2323-2337. doi.org/10.1007/s11012-021-01361-z.
XII. Wang, C. M. (1995). “Timoshenko beam-bending solutions in terms of Euler-Bernoulli solutions.” Journal of engineering mechanics, 121(6), 763-765. 10.1061/(ASCE)0733-9399(1995)121:6(763)
XIII. Yavari, A., & Sarkani, S. (2001). “On applications of generalized functions to the analysis of Euler–Bernoulli beam–columns with jump discontinuities.” International Journal of Mechanical Sciences, 43(6), 1543-1562. 10.1016/S0020-7403(00)00041-2.
XIV. Yu, H., & Yuan, Y. (2014). “Analytical solution for an infinite Euler-Bernoulli beam on a viscoelastic foundation subjected to arbitrary dynamic loads.” Journal of Engineering Mechanics, 140(3), 542-551. 10.1061/(ASCE)EM.1943-7889.00006
XV. Zamorska, I. (2014). “Solution of differential equation for the Euler-Bernoulli beam.” Journal of Applied Mathematics and Computational Mechanics, 13(4), 157-162. 10.17512/jamcm.2014.4.21
XVI. Zhang, P., Qing, H., & Gao, C. (2019). “Theoretical analysis for static bending of circular Euler–Bernoulli beam using local and Eringen’s nonlocal integral mixed model.” ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik and Mechanik, 99(8), e201800329. doi.org/10.1002/zamm.201800329.

View Download

ALL-OPTICAL CARRY SKIP ADDER WITH THE HELP OF TERAHERTZ OPTICAL ASYMMETRIC DEMULTIPLEXER-BASED SWITCH

Authors:

Arunava Bhattachrayya

DOI NO:

https://doi.org/10.26782/jmcms.2023.06.00004

Abstract:

The terahertz optical asymmetric demultiplexer (TOAD) or semiconductor optical amplifier (SOA)-assisted Sagnac switches have been used to construct an all-optical 4-bit carry skip adder. This design aims to satisfy the high speed and accuracy requirements of modern ultrafast digital transmission. Using a combination of an all-optical multiplexer and an all-optical full adder, we describe an all-optical carry skip adder. When compared to ripple carry adder and carry look-ahead adder, carry skip adder may be employed to create a fast arithmetical processing unit. Numerical simulation is used to develop and validate this theoretical model.

Keywords:

Terahertz optical asymmetric demultiplexer,semiconductor optical amplifier,carry skip adder,optical logic,

Refference:

I. A. Bhattachryya, D. K. Gayen. ALL-OPTICAL N-BIT BINARY TO TWO’S COMPLEMENT CONVERTER WITH THE HELP OF SEMICONDUCTOR OPTICAL AMPLIFIER-ASSISTED SAGNAC SWITCH. J. Mech. Cont. & Math. Sci., Vol.-17, No.-1, January (2022) pp 117-125. 10.26782/jmcms.2022.01.00009.
II. D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly, D. Nesset, I.D. Phillips, A.J. Poustie, D.C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
III. D. K. Gayen and J. N. Roy, “All-optical arithmetic unit with the help of terahertz optical asymmetric demultiplexer-based tree architecture”, Applied Optics, Optical Society of America, 47(7), 933-943 (2008).
IV. D. K. Gayen, T. Chattopadhyay, M. K. Das, J. N. Roy, and R. K. Pal, “All-optical binary to gray code and gray to binary code conversion scheme with the help of semiconductor optical amplifier -assisted sagnac switch”, IET Circuits, Devices & Systems, 5(2), 123-131 (2011).
V. D. K. Gayen, A. Bhattacharyya, T. Chattopadhyay, and J. N. Roy, “Ultrafast all-optical half adder using quantum-dot semiconductor optical amplifier-based Mach-Zehnder Interferometer”, IEEE/OSA Journal of Lightwave Technology, 30 (21), 3387-93 (2012).
VI. G. Li, F. Qian, H. Ruan, and L. Liu, “Compact parallel optical modified-signed-digit arithmetic-logic array processor with electron-trapping device,” Applied Optics 38, 5039–5045 (1999).
VII. G. Li, “Recent advances in coherent optical communication”, Advances in Optics and Photonics, 1(2), 279-307 (2009).
VIII. H. J. S. Dorren, M.T. Hill, Y. Liu, E. Tangdiongga, M.K. Smit, G.D. Khoe, “Optical signal processing and telecommunication applications,” Proceedings of the Conference on Optical Amplifiers and their Applications (WD1), on CD-ROM (2005).
IX. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD)”, IEEE Photonic Technology Letters, 5(7), 787-789 (1993).
X. J. P. Sokoloff, I. Glesk, P. R. Prucnal, and R. K. Boneck, “Performance of a 50 Gbit/s optical time domain multiplexed system using a terahertz optical asymmetric demultiplexer”, IEEE Photonics Technology Letters, 6(1), 98-100 (1994).
XI. J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, S. H. Kim, “All-optical half adder using semiconductor optical amplifier based devices,” Optics Communications, 218, 345–349 (2003).
XII. K. E. Zoiros, C. S. Koukourlis, and T. Houbavlis, “Analysis and design of ultrahigh-speed all-optical semiconductor-optical-amplifier-assisted Sagnac recirculating shift register with an inverter”, Optical Engineering, 44(6), 065001-12 (2005).
XIII. K. E. Zoiros, A. Kalaitzi, and C. S. Koukourlis, “Study on the cascadability of a SOA-assisted Sagnac switch pair”, International Journal for Light and Electron Optics, 121(13), 1180-1193 (2010).
XIV. K. E. Zoiros, M. Kalyvas, and T. Houbavlis, ‘‘The path towards all-optical packet switching in future broadband networks,’’ Journal of Communication Networking, 2(3), 124–129 (2003).
XV. M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: Semiconductor laser amplifier in a loop mirror”, Journal of lightwave Technology, 13(10), 2099-2112 (1995).
XVI. P. Phongsanam, S. Mitatha, C. Teeka, and P. P. Yupapin, “All-optical half-adder / half-subtractor using dark bright soliton conversion control”, Microwave and Optical Technology Letters, 53(7), 1541-1544 (2011).
XVII. R. P. Webb, R.J. Manning, X. Yang, R. Giller, “All-optical 40Gb/s XOR gate with dual ultrafast nonlinear interferometers,” Electronics Letters, 41, 1396-1397 (2005).
XVIII. S. K. Garai, ‘A novel all-optical frequency encoded method to develop Arithmetic and Logic Unit (ALU) using semiconductor optical amplifiers’, Journal Of Light wave Technology, 29(23), 3506-3514, (2011).
XIX. Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G.D. Khoe, H.J.S. Dorren, “Error-free all-optical wavelength conversion at 160Gbit/s using a semiconductor optical amplifier and an optical bandpass filter,” Jounal of Lightwave Technology 24, 230-236 (2006).

View Download

NUMERICAL INVESTIGATION OF THE GROWTH- DIFFUSION MODEL

Authors:

Jawad Kadhim Tahir

DOI NO:

https://doi.org/10.26782/jmcms.2023.07.00001

Abstract:

In this article, a numerical solution to the growth-diffusion problem is investigated by obtaining the results of computational experiments for the non-homogeneous growth-diffusion problem and finding its approximate solution by using the modified finite difference method. In this article, a numerical study is carried out by the modified finite difference method. The numerical scheme used a second-order central difference in space with a first-order in time.

Keywords:

growth-diffusion problem,modified finite difference method,central difference,non-classical variational,

Refference:

I. Canosa, J., : “On a nonlinear diffusion equation describing population growth”. IBM Journal of Research and Development. vol. 17.pp 307, 1973.
II. Chern, C. Gui, W.-M. Ni, X., : “Wang Further study on a nonlinear heat equation”. J. Differential Equations, 169, pp. 588-613, 2001.
III. Maud El-Hachem, Scott W. McCue, Matthew J. Simpson, : “A Continuum Mathematical Model of Substrate-Mediated Tissue Growth”. : Bulletin of Mathematical Biology, vol.84, no.4, 2022.
IV. Melike KARTA, : “Numerical Method for Approximate Solution of Fisher’s Equation”. Journal of the Institute of Science and Technology, pp.435, 2022.
V. Mizoguchi, N., : “On the behavior of solutions for a semilinear parabolic equation with supercritical nonlinearity”. Math. Z., 239, pp. 215-229, 2002.
VI. Mohammad Izadi, “A second-order accurate finite-difference scheme for the classical Fisher-Kolmogorov-Petrovsky-Piscounov equation”. : Journal of Information and Optimization Sciences, vol.42, no.2, pp.431, 2021.
VII. Muhammad Z. Baber, Aly R. Seadway, Muhammad S. Iqbal, Nauman Ahmed, Muhammad W. Yasin, Muhammad O. Ahmed, : “Comparative analysis of numerical and newly constructed soliton solutions of stochastic Fisher-type equations in a sufficiently long habitat”, International Journal of Modern Physics B, vol.37, no.16, 2023.
VIII. Shahid Hasnain, Muhammad Saqib, Muhammad F. Afzaal, Iqtadar Hussain, : “Numerical Study to Coupled Three Dimensional Reaction Diffusion System”. IEEE Access, vol.7, pp.46695-46705, 2019.
IX. Tahir, J.K., : “NUMERICAL EXPERIMENTS FOR NONLINEAR BURGER’S PROBLEM”. J. Mech. Cont. & Math. Sci., Vol.-16, No.-11, November (2021) pp 11-25.

View Download

CARBON STORAGE POTENTIAL OF DOMINANT MANGROVES IN WESTERN INDIAN SUNDARBANS

Authors:

Poulomi Mullick, Goutam Sengupta, Sujoy Biswas, Nabonita Pal, Prosenjit Pramanick, Sana Ahmed, Sufia Zaman, Abhijit Mitra

DOI NO:

https://doi.org/10.26782/jmcms.2023.07.00002

Abstract:

The Indian Sundarbans are noted for luxuriant mangrove diversity that is known to scrub carbon dioxide from the atmosphere. Precise estimation of the biomass of these species is necessary for evaluating the carbon storage pattern in the mangroves of the lower Gangetic belt. The plant biomass estimation was carried out for an average of 25 trees in 15 (10 m × 10 m) plots from the intertidal mudflats of Chemaguri (southeast portion of Sagar Island) in low tide conditions from 10th to 15th September 2022. The estimated biomass was of the order Sonneratia apetala > Avicennia alba > Avicennia marina > Excoecaria agallocha > Avicennia officinalis. The stem, branch, and leaf biomass of each species were converted into carbon by multiplying with a factor of 0.45 as per the standard procedure. The deviations observed in the results obtained from both studies call for the standardization of the process.

Keywords:

Carbon storage,mangroves,Above Ground Biomass (AGB),Below Ground Biomass (BGB),

Refference:

I. Aksomkoae, S., “Structure, regeneration and productivity of mangroves in Thailand”. : pp: 1-109. (Michigan State University), 1975. 10.25335/M5FX74B82.
II. Alongi, D.M., “Present State and Future of the World’s Mangrove Forests. Environmental Conservation”. : Environmental Conservation, vol. 29, no. 3, pp: 331-349, 2002. 10.1017/S0376892902000231.
III. Bohm, W., “Methods of studying root systems”. : Springer, eBook ISBN 978-3-642-67282-8, XIII, pp: 188, 1979.
IV. Briggs, S.V., “Estimates of biomass in a temperate mangrove community”. : Australian Journal of Ecology, vol. 2, pp: 369-373, 1977. 10.1111/j.1442-9993.1977.tb01151.x
V. Brown, S., “Estimating biomass and biomass change of tropical forests: a primer”. : FAO Forestry Paper 134, 1986.
VI. Chaudhuri, A.B., Choudhury, A., “Mangroves of the Sundarbans”. : Vol. 1: India, pp: 247, (IUCN, Bangkok, Thailand), 1994.
VII. Chidumaya, E.N., “Aboveground woody biomass structure and productivity in a Zambezian woodland”. : Forest Ecology and Management, vol. 36, pp: 33-46, 1990. 10.1016/0378-1127(90)90062-G
VIII. Clough, B.F., Scott, K., “Allometric relationship for estimating above ground biomass in six mangrove species”. : Forest Ecology and Management, vol. 27, pp: 127, 1989. 10.1016/0378-1127(89)90034-0.
IX. De La Cruz, A.A., Banaag, B.F., “The ecology of a small mangrove patch in Matabungkay Beach Batangas Province”. : Nature Applied in Science Bulletin, vol. 20, pp: 486-494, 1967.
X. Dyson, F.J., “Can we control the carbon dioxide in the atmosphere?”. : Energy (Oxford), vol. 2, pp: 287-291, 1977.
XI. Ellison, J.C., Stoddart, D.R., “Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications”. : Journal of Coastal Resources, vol. 7, pp: 151-165, 1991.
XII. Fearnside, P.M., “Forests and global warming mitigation in Brazil opportunities in the Brazilian forest sector for responses to global warming under the clean development mechanism”. : Biomass Bioenergy, vol. 16, pp: 171-189, 1999. 10.1016/S0961-9534(98)00071-3.
XIII. Franks, T., Falconer, R., “Eveloping procedures for the sustainable use of mangrove systems”. : Agricultural Water Management, vol. 40, no. 1, pp: 59-64, 1999. 10.1016/S0378-3774(98)00104-8.
XIV. https://www.fao.org/3/w4095e/w4095e0c.htm
XV. Husch, B., Miller, C.I., Beers, T.W., “Forest mensuration”. Ed. 3. Wiley, New York. pp: 402, 1982.
XVI. Jackson, R.B., Canadell, J., Ehleringer, J.R., “A global analysis of root distributions for terrestrial biomes”. Oecologia, vol. 108, no. 3, pp: 389-411, 1996. 10.1007/BF00333714

XVII. Komiyama, A., Moriya, H., Suhardjono, P., Toma, T., Ogino, K., “Forest as an ecosystem, its structure and function”, (WWF- India, West Bengal State Office), pp: 85-151, 1988.
XVIII. Komiyama, A., Ogino, K., Aksomkoae, S., Sabhasri, S., “Root biomass of a mangrove forest in southern Thailand 1. Estimation by the trench method and the zonal structure of root biomass”. : Journal of Tropical Ecology, vol. 3, pp: 97-108, 1987. 10.1017/S0266467400001826.
XIX. Komiyama, A., Wahid bin Rasib, Abd., Kato, S., Takeuchi, T., Nagano, I., Ito, E., “Net primary production of a 110-year-old deciduous hardwood forest”, Proc. of 21st Century Centre of Excellence Programme on “Satellite Ecology”. : Gifu University, Gifu Prefecture, Japan, 27th Feb, pp: 112-118, 2007.
XX. Koul, D.N., Panwar, P., “Prioritizing Land-management options for carbon sequestration potential”. : Current. Science, vol. 95, pp: 5-10, 2008
XXI. Kraenzel, M., Castillo, A., Moore, T., Potvin, C., “Carbon storage of harvest age teak (Tectona grandis) plantations Panama”. Forest Ecology and Management, vol. 173, pp: 213-225, 2003.
XXII. Likens, G.E., Bormann, F.H., “Chemical analyses of plant tissues from the Hubbard Brook ecosystem in New Hampshire”. : Yale University School of Forestry Bulletin, vol.79, pp: 25, 1970.
XXIII. Losi, C.J., Siccama, T.G., Condit, R., Morales, J.E., “Analysis of alternative methods for estimating carbon stock in young tropical plantations”. : Forest Ecology and Management, vol. 184, no. 1-3, pp: 355-368, 2003. 10.1016/S0378-1127(03)00160-9.
XXIV. Mckee, K.L, “Interspecific variation in growth biomass partitioning and defensive characteristics of neotropical mangrove seedlings response to light and nutrient availability”. : American Journal of Botany, vol. 82, pp: 299-307, 1995.
XXV. Mitra, A., Banerjee, K., “Living resources of the sea: focus Indian Sundarbans”, pp: 96, 2005.
XXVI. Mitra, A., Banerjee, K., Bhattacharyya, D.P., “Ecological profile of Indian Sundarbans: pelagic primary producer community”, Vol.1. (WWF- India, West Bengal State Office), 2004.
XXVII. Mitra, A., Pal, S., “The oscillating mangrove ecosystem and the Indian Sundarbans”. : 1st Edition (WWF- India, West Bengal State Office), 2002.
XXVIII. Montagnini, F., Porras, C., “Evaluating the role of plantations as carbon sinks an example of an integrative approach from the humid tropics”. : Environmental Management, vol. 22, no. (3), pp: 459-470, 1998.
XXIX. Nelson, B.W., Mesquita, R., Periera, J.L.G., Aquino De Souza, S.G., Batista, G.T., Couto, L.B., “Allometric regressions for improved estimate of secondary forest biomass in the central Amazon”. : Forest Ecology and Management, vol. 117, pp: 149-167, 1999. 10.1016/S0378-1127(98)00475-7.
XXX. Ong, J.E., Gong, W.K., Clough, B.F., “Structure and productivity of a 20-year old stand of Rhizophora apiculate BL mangrove forest”. : Journal of Biogeography, vol. 55, pp: 417-424, 1995. 10.2307/2845938.
XXXI. Primavera, J.H., “Socio-economic impacts of shrimp culture”. : Aquatic Research, vol. 28, pp: 815-827, 1997.
XXXII. Putz, F.E., Chan, H.T., “Tree growth Dynamics and productivity in a mature mangrove forest in Malaysia”. : Forest Ecology and Management, vol. 17, pp: 211-230, 1986. 10.1016/0378-1127(86)90113-1.
XXXIII. Richter, D.D., Markewitz, D., Trumbore, S.E., Wells, C.G., : “Rapid accumulation and turnover of soil carbon in a re-establishing forest”. Nature, vol. 400, pp: 56-58, 1999. 10.1038/21867.
XXXIV. Scott, D.A., “A directory of Asian wetlands”. : IUCN, 1989.
XXXV. Bepari S. P., Pramanick P., Zaman S., Mitra A. : “COMPARATIVE STUDY OF HEAVY METALS IN THE MUSCLE OF TWO EDIBLE FINFISH SPECIES IN AND AROUND INDIAN SUNDARBANS”. : J. Mech. Cont. & Math. Sci., Vol.-16, No.-10, October (2021) pp 9-18. 10.26782/jmcms.2021.10.00002.
XXXVI. Tamai, S., Nakasuga, T., Tabuchi, R., Ogino, K., “Standing biomass of mangrove forests in Southern Thailand”. : Journal of the Japanese Forest Society, vol. 68, pp: 384-388, 1986.
XXXVII. UNEP, United Nations Environment Programme, 1994
XXXVIII. Whittaker, R.H., Likens, G.E., “Carbon in the biota”. : Proceedings of the 24th Brookhaven Symposium in Biology, United States Atomic Energy Commission, Upton, New York, pp: 281-302, 1973.
XXXIX. Woomer, P.L., “Impact of cultivation of Carbon Fluxes in woody savannas of Southern Africa”. : Water Air Soil Pollution, vol. 70, pp: 403- 412, 1999.

View Download

MATHEMATICAL ANALYSIS AND STUDY OF THE NUMEROUS TRAVELING WAVE BEHAVIOR FOR DIFFERENT WAVE VELOCITIES OF THE SOLITON SOLUTIONS FOR THE NONLINEAR LANDAU-GINSBERG-HIGGS MODEL IN NONLINEAR MEDIA

Authors:

M. Al-Amin , M. Nurul Islam

DOI NO:

https://doi.org/10.26782/jmcms.2023.07.00003

Abstract:

In this study, the nonlinear Landau-Ginsberg-Higgs (LGH) model is proposed and examined. The stated model is applied to analyze superconductivity and drift cyclotron waves in radially inhomogeneous plasma for coherent ion-cyclotron waves. This is undeniably a robust mathematical model in real-world applications. The generalized exponential rational function method (GERFM) is utilized to extract the suitable, useful, and further general solitary wave solutions of the LGH model via the traveling wave transformation. Furthermore, we investigate the effects of wave velocity in a particular time limit through a graphical representation of the examined solutions of the model to understand the dynamic behavior of the system. The attained results confirm the effectiveness and reliability of the considered scheme

Keywords:

The nonlinear Landau-Ginsberg-Higgs (LGH) model,the generalized exponential rational function method (GERFM),the traveling wave transformation,the soliton solutions,

Refference:

I. A.S.H.F. Mohammed, H.O. Bakodah, M.A. Banaja, A.A. Alshaery, Q. Zhou, A. Biswas, P. Seithuti. Moshokoa, M.R. Belic, Bright optical solitons of Chen-Lee-Liu equation with improved Adomian decomposition method, Optik, 181:964-970, 2019.

II. A. Zafar, H. Rezazadeh, K.K. Ali, On finite series solutions of conformable time-fractional Cahn-Allen equation, Nonlin. Eng., 9(1):194-200, 2020.

III. A. Yusuf, M. Inc, A.I. Aliyu, D. Baleanu, Optical Solitons Possessing Beta Derivative of the Chen-Lee-Liu Equation in Optical Fibers, Fron. Phys., 7, 34, 2019.

IV. A.S.H.F. Mohammed, H.O. Bakodah, Approximate Solutions for Dark and Singular Optical Solitons of Chen-Lee-Liu Model by Adomian-based Methods, Int. J. Appl. Comput. Math., 7, 98, 2021.
V. A. Bekir, O. Unsal, Exact solutions for a class of nonlinear wave equations by using first integral method, Int. J. Nonlin. Sci., 15(2):99-110, 2013.

VI. A. Irshad, S.T. Mohyud-Din, N. Ahmed, U. Khan, A new modification in simple equation method and its applications on nonlinear equations of physical nature, Results Phys., 7:4232-40, 2017.

VII. A.C. Cevikel, E. Aksoy, O. Guner, A. Bekir, Dark bright soliton solutions for some evolution equations, Int. J. Nonlin. Sci., 16(3):195-202, 2013.

VIII. A. Iftikhar, A. Ghafoor, T. Zubair, S. Firdous, S.T. Mohyud-Din, (????′????⁄,1????⁄)-Expansion method for traveling wave solutions of (2+1) dimensional generalized KdV, Sine Gordon and Landau-Ginzburg-Higgs equations, Sci. Res. Essays., 8(28):1349-59, 2013.

IX. B. Ghanbari, D. Baleanu, M.A. Qurashi, New Exact Solutions of the Generalized Benjamin-Bona-Mahony Equation, Symmetry, 11(1):20, 2019.

X. B. Ghanbari, M.S. Osman, D. Baleanu, Generalized exponential rational function method for extended Zakharov Kuzetsov equation with conformable derivative, Mod. Phy. Lett. A., 34,1950155,16pp, 2019.

XI. B. Ghanbari, M. Inc, A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear schrödinger equation, Eur. Phys. J. Plus, 133(4):142, 18pp, 2018.

XII. E.H.M. Zahran, M.M.A. Khater, Modified extended tanh-function method and its applications to the Bogoyavlenskii equation, Appl. Math. Model, 40(3):1769-1775, 2017.

XIII. F.S. Khodadad, S.M.M. Alizamini, B. Günay, L. Akinyemi, H. Rezazadeh, I. Mustafa, Abundant optical solitons to the Sasa-Satsuma higher-order nonlinear Schrödinger equation, Opt. Quant. Elec., 53, 702, 2021. XIV. H. Rezazadeh, A. Korkmaz, M. Eslami, S.M.M. Alizamini, A large family of optical solutions to Kundu-Eckhaus model by a new auxiliary equation method, Opt. Quant. Elec., 51(84), 2019.

XV. H.M. Baskonus, H. Bulut, T.A. Sulaiman, New complex hyperbolic structures to the Lonngren-Wave equation by using Sine-Gordon expansion method, App. Math. Non-lin. Sci., 4(1):129-138, 2019.

XVI. H.M. Baskonus, H. Bulut, A. Atangana, On the complex and hyperbolic structures of the longitudinal wave equation in a magneto-electro-elastic circular rod, Smart Mater. Struct., 25(3):035022, 2016.

XVII. K. Ahmad, K. Bibi, M.S. Arif, K. Abodayeh, New Exact Solutions of Landau-Ginzburg-Higgs Equation Using Power Index Method, J. Func. Spa., 4351698, 6pp, 2023.

XVIII. M.M. El-Borai, W.G. El-Sayed, R.M. Al-Masroub, Exact solutions for time fractional coupled Whitham-Broer-Kaup equations via exp-function method, Int. Res. J. Eng. Tech., 2(6):307-315, 2015.

XIX. M. Al-Amin, M.N. Islam, O.A. Ilhan, M.A. Akbar, D. Soybas, Solitary Wave Solutions to the Modified Zakharov-Kuznetsov and the (2+1)-Dimensional Calogero-Bogoyavlenskii-Schiff Models in Mathematical Physics, J. Math., 2022, 5224289, 16pp, 2022.

XX. M. Al-Amin, M.N. Islam, M.A. Akbar, Adequate wide-ranging closed-form wave solutions to a nonlinear biological model, Par. Diff. Equ. App. Math., 2021(4):100042, 2021.

XXI. M. Al-Amin, M.N. Islam, M.A. Akbar, The closed-form soliton solutions of the time-fraction Phi-four and (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff model using the recent approach, Par. Diff. Equ. App. Math., 2022(5):100374, 2022.

XXII. M.N. Islam, M.A. Akbar, Closed form solutions to the coupled space-time fractional evolution equations in mathematical physics through analytical method, J. Mech. Cont. Math. Sci., 13(2):1-23, 2018.

XXIII. M.A. Akbar, N.H.M. Ali, E.M.E. Zayed, Abundant exact traveling wave solutions of generalized Bretherton equation via improved (????′????⁄)-expansion method, Com. Theo. Phys., 57(2012):173-178, 2012.

XXIV. M.A.E. Abdel Rahman, H.A. Alkhidhr, Closed-form solutions to the conformable space-time fractional simplified MCH equation and time fractional Phi-4 equation, Results Phys., 18, 103294, 2020.

XXV. M. Bilal, W. Hu, J. Ren, Different wave structures to the Chen-Lee-Liu equation of monomode fibers and its modulation instability analysis, Eur. Phys. J. Plus, 136(4):385, 2021.

XXVI. M.E. Islam, M.A. Akbar, Stable wave solutions to the Landau-Ginzburg-Higgs equation and the modified equal width wave equation using the IBSEF method, Arab J. Basic Appl. Sci., 27(1):270-278, 2020.

XXVII. M.R. Ali, M.A. Khattab, S.M. Mabrouk, Travelling wave solution for the Landau-Ginburg-Higgs model via the inverse scattering transformation method, Nonlin. Dyn., 111:7687-7697, 2023.

XXVIII. M.N. Islam, O.A. İlhan, M.A. Akbar, F.B. Benli, D. Soybaş, Wave propagation behavior in nonlinear media and resonant nonlinear interactions, Com. Nonlin. Sci. Num. Simul., 108, 106242, 2022.

XXIX. N. Ozdemir, H. Esen, A. Secer, M. Bayram, A. Yusuf, T.A. Sulaiman, Optical Soliton Solutions to Chen Lee Liu model by the modified extended tanh expansion scheme, Optik, 245, 167643, 2021.

XXX. O.A. Ilhan, M.N. Islam, M.A. Akbar, Construction of functional closed form wave solutions to the ZKBBM equation and the Schrodinger equation, Iranian J. Sci. Tech. Transac. Mech. Eng., 2020, 14pp, 2020.

XXXI. O.G. Gaxiola, A. Biswas, W-shaped optical solitons of Chen-Lee-Liu equation by Laplace-Adomian decomposition method, Opt. Quan. Electr., 50, 314:1-11, 2018.

XXXII. R. Roy, M.A. Akbar, A.R. Seadawy, D. Baleanu, Search for adequate closed form wave solutions to space-time fractional nonlinear equations, Par. Diff. Equ. App. Math., 2021(4):100025, 2021.

XXXIII. S.J. Chen, X. Lü, X.F. Tang, Novel evolutionary behaviors of the mixed solutions to a generalized Burgers equation with variable coefficients, Commun. Nonlin. Sci. Num. Simul., 95, 105628, 2021.

XXXIV. S. Albosaily, W.W. Mohammed, A.E. Hamza, M. El-Morshedy, H. Ahmad, The exact solutions of the stochastic fractional space Allen-Cahn equation, Open Phy., 20(1):23-29, 2022. XXXV. W.X. Ma, L. Zhang, Lump solutions with higher-order rational dispersion relations, Pram. J. Phys., 94(43), 2020.

XXXVI. W.X. Ma, Y. Zhang, Y. Tang, Symbolic computation of lump solutions to a combined equation involving three types of nonlinear terms, East Asian J. Appl. Math., 10(4):732-745, 2020.

XXXVII. W. Gao, H. Rezazadeh, Z. Pinar, H.M. Baskonus, S. Sarwar, G. Yel, Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique, Opt. Qua. Elec., 52(1), 2020.

XXXVIII. W.P. Hu, Z.C. Deng, S.M. Han, W. Fa, Multi symplectic Runge-Kutta method for Landau-Ginzburg-Higgs equation, Appl. Math. Mech., 30(8):1027-34, 2009.

XXXIX. Y. Yildirim, Optical solitons to Chen-Lee-Liu model in birefringent fibers with trial equation approach, Optik, 183:881-886, 2019.

XL. Y. Liu, J. Roberts, Y. Yan, A note on finite difference methods for nonlinear fractional differential equations with non-uniform meshes, Int. J. Com., 95(6-7):1151-1169, 2017.

View Download

EFFICIENT EXPLICIT NUMERICAL TECHNIQUE FOR MODELING ADVECTION DIFFUSION REACTION FOR A WATER QUALITY MODEL IN AN OPENED UNIFORM FLOW – A 1D PERSPECTIVE

Authors:

Abdul Qadir Mugheri, Asif Ali Shaikh, Shafqat Shahzoor Chandio Baloch

DOI NO:

https://doi.org/10.26782/jmcms.2023.07.00004

Abstract:

This research paper presents a novel and efficient explicit numerical technique for modeling advection diffusion reactions in an opened uniform flow from a one-dimensional perspective. The proposed hybrid scheme combines the benefits of explicit finite difference schemes, resulting in an accurate and fast solution for the advection-diffusion equation in water stream problems. The effectiveness of the scheme is demonstrated through its successful implementation in the solution of the water quality problems, where the advection-diffusion equation plays a crucial role. The results obtained using this technique show improved accuracy and computational efficiency. Overall, this research offers a valuable contribution to the field of numerical modeling in water quality and provides a useful tool for researchers and practitioners working in the area of approximating the one-dimensional diffusion equation for the measurement of pollutant concentration.

Keywords:

Explicit,Finite Difference,One Dimensional Advection Diffusion Equation,Uniform Flow,

Refference:

I. Febi Sanjaya and Sudi Mungkasi, : “A simple but accurate explicit finite difference method for the advection-diffusion equation” International Conference on Science and Applied Science 2017 IOP Publishing, IOP Conf. Series: Journal of Physics: Conf. Series 909 (2017) 012038. 10.1088/1742-6596/909/1/012038.
II. Halil Karahan, : “Solution of Weighted Finite Difference Techniques with the Advection_Diffusion Equation Using Spreadsheets”. 2008 Wiley Periodicals, Inc. Comput Appl Eng Educ 16: 147_156, 2008; Published online in Wiley Inter Science (www.interscience.wiley.com). 10.1002/cae.20140.
III. Inasse EL Arabi, Anas Chafi and Salaheddine Kammouri Alami, : “ Numerical simulation of the advection-diffusion-reaction equation using finite difference and operator splitting methods Application on the 1D transport problem of contaminant in saturated porous media”. E3S Web of Conferences 351, 01003 (2022). 10.1051/e3sconf/202235101003ICIES’22
IV. Mehdi Dehghan, : “Weighted Finite Difference Techniques For The One-dimensional Advection-Diffusion Equation”, ELSEVIER Applied Mathematics and computation 147 (2004) 307-319.
V. Pawarisa, Samalerk and Nopparat Pochai, : “A Saulyev Explicit Scheme for an One-Dimensional Advection-Diffusion-Reaction Equation in an Opened Uniform Flow Stream”. Thai Journal of Mathematics Volume 18 Number 2 (2020) Pages 677-683.
VI. Piyada, Phosri, NopparatPochai, : “Explicit Finite Difference Techniques for a One-Dimensional Water Pollutant Dispersion Model in a Stream”. PIYADA PHOSRI et al. 10.5013/IJSSST.a.21.03.01 1.1 ISSN: 1473-804x online, 1473-8031 print.
VII. Samalerk, Pawarisa and NopparatPochai, : “Numerical Simulation Of A One-Dimensional water Quality Model In A Stream Using A Saulyev Technique With Quadatic Interpolated Initial Boundary Conditions”. Hindawi Abstract and Applied Analysis Volume 2018, Article ID 1926519, 7 pages. 10.1155/2018/1926519.

View Download

LEVEL SEPARATION OF FUZZY PAIRWISE REGULAR BITOPOLOGICAL SPACES

Authors:

Md. Sahadat Hossain, Md. Saiful Islam, Mousumi Akter

DOI NO:

https://doi.org/10.26782/jmcms.2023.08.00001

Abstract:

This paper introduced four notions of Fuzzy pairwise regular (in short FP-R) bitopological spaces and established some relation among them. Also, prove that all of these definitions satisfy the “good extension” property. Further, prove that all of these notions are hereditary. Finally, observe that all concepts are preserved under one-one, onto, and continuous mapping.

Keywords:

Fuzzy bitopological space,Regular space,FP-Continuous,FP – Open,FP – Close Map,

Refference:

I. Abu Safiya A.S., Fora A.A. and Warner M.W., Fuzzy separation axioms and fuzzy continuity in fuzzy bitopological spaces; Fuzzy sets and system. 62(1994), 367-373.
II. Abu Safiya A.S., Fora A.A. and Warner M.W., Higher separation axioms in bifuzzy topological spaces; Fuzzy sets and system. 79(1996), 367-373.
III. Amin M.R., Hossain M.S. and Miah S.S., Fuzzy Pairwise Regular Bitopological Spaces in Quasi-coincidence Sense; J. Bangladesh Academy of Science. 44(2) (2021), 139-143.
IV. Banerjee G. K., On pairwise almost strongly -continuous mapping; Bull. Cal. Math. Soc. 79(1987)314-320.
V. Chang C.L., Fuzzy topological spaces; J. Math. Anal Appl. 24(1968), 182-192.
VI. Das N.R. and Baishya, Fuzzy bitopological spaces and separation axioms; The Jour. Fuzzy Math. 2(1994), 389 – 396.
VII. Demirci M., Category-theoretic fuzzy topological spaces and their dualites; Fuzzy sets and systems. 227(2013) 1-24.
VIII. Garcia J.G., Romaguera S. and Sanehis M., An identification theorem for the completion of the Hausdorff fuzzy metric; Fuzzy sets and systems. 227(2013) 96-106.
IX. Islam M.S., Islam R. and Islam M.S. “On a study on Intuitionistic fuzzy r-normal Spaces” Notes on Intuitionistic Fuzzy Sets27(3)(2021),69-82
X. Hossain M. S. and Ali D.M. ; On Fuzzy Regular Topological Spaces. Rajshahi University Studies Part-B, Journal of Science, Vol. 34 (2006), 25-36.
XI. Hutton B. and Reilly I, Separation axioms in fuzzy topological spaces. Fuzzy Sets and Systems 3(1980) 93-104.
XII. Kandil A. and El-Etriby A.M., On separation axioms in fuzzy topological spaces. Tamkang J. Math. 18(1987) 49-59.
XIII. Kandil A. and El-Shafee M.E., Separation axioms for fuzzy bitopological space; J. Inst. math. Comput. Sci. 4(3) (1991) 373-383.
XIV. Kandil A., Nouh A.A. and El-Sheikkh S.A., On fuzzy bitopological spaces; Fuzzy sets and systems. 74(1995) 353-63.
XV. Kelly J.C., Bitopological Spaces,Proc. London math. Soc. 13(3) (1963) 71-89.
XVI. Kim Y.C., r- fuzzy semi – open sets in fuzzy bitopological spaces, J. Math. Sci. Special (FJMS) II (2000) 221-236.
XVII. Kumar S.S., On fuzzy pairwise - Continuity and fuzzy pairwise precontinuity. Fuzzy Sets and Systems 62(1994) 232-238.
XVIII. Lee E.P., Preopen sets in smooth bitopological spaces. J. Com. Korean Math. Soc. 18(3)(2003) 521-532.
XIX. Lowen R., Fuzzy topological spaces and fuzzy compactness; J. Math. Anal. Appl. 56(1976), 621-633.
XX. Lowen R. and Srivastava A.K., FTS0 : The epireeflective hull of the sierpinski object in FTS; Fuzzy sets and system. 29 (1989) 171-76.
XXI. Mahbub M.A., Hossain M.S. and Hossain M.A. “Para-Compactness concept in intuitionistic fuzzy topological spaces” J. Mech. Cont. & Math. Sci., 17(4)(2022), 32-39.
XXII. Mukherjee A., Completely induced bifuzzy topological spaces. Indian J. pure appl Math. 33(6) (2002)911-916.
XXIII. Nouh A.A., On separation axioms in fuzzy bitopological spaces; Fuzzy sets and systems 80(1996)225-236.
XXIV. Prova T.T. and Hossain M.S., Separation axioms in intuitionistic topological spaces; Italian Journal of Pure and Applied Mathematics, N.48 (2022) 986-995.
XXV. Prova T.T. and Hossain M.S. “Intuitionistic fuzzy based regular and normal spaces” Notes on Intuitionistic Fuzzy Sets26(4)(2020),53-63.
XXVI. Ramadan A.A, Abbas S.E. and Abdel – Latif A.A. , On fuzzy bitopological spaces in Sostaks sense; J. Commun Korean Math. Soc. 21(2006), No 3, 497-514.
XXVII. Weiss M.D., Fixed points , separation and induced topologies for fuzzy sets. J. Math . Anal . Appl . 50 (1975), 142-150.
XXVIII. Wong C.K. , Fuzzy points and local properties of Fuzzy topology ; J. Math. Anal . Appl. 46 (1974), 316-328.
XXIX. Yue Y., Lattice –valued induced fuzzy topological spaces. Fuzzy sets and systems 158(2007) 1461-1471.
XXX. Zadeh L.A., Fuzzy sets. Information and control 8 (1965). 338-353.

View Download