Authors:
Dharti Arvadiya,Ajay S. Gor,DOI NO:
https://doi.org/10.26782/jmcms.2024.07.00003Keywords:
Deterioration,All-units discount,Graded mean integration method,Price dependent demand,Time dependent holding cost,Triangular fuzzy number,Abstract
The proposed inventory model has been developed for deteriorating items subject to all-unit discount in a fuzzy environment. Considering demand as price dependent, holding cost depends on time, and purchase cost depends on order size. The inventory parameters, such as ordering cost, holding cost, and demand rate, are all represented as triangular fuzzy numbers to capture the uncertainty in the system. The objective of the model is to determine the optimal time length, selling price, and order quantity to maximize the total profit function. Numerical examples are carried out to validate the models. Sensitivity analysis is performed to check the effect of fuzzy parameters on profit function and decision variables to get further insights. Results stated that a fuzzy model works better than a crisp model, and an all-units discount policy helps in maximizing a retailer's profit. It allows for flexibility and adaptability, leading to a potential increase in revenue.Refference:
I. Alfares H. K., & Ghaithan A. M., : ‘Inventory and pricing model with price-dependent demand, time-varying holding cost, and quantity discounts’. Computers and Industrial Engineering. Vol. 94, pp. 170–177, 2016. 10.1016/j.cie.2016.02.009
II. Bellman R. E., & Zadeh L. A., : ‘Decision-Making in a Fuzzy Environment’. Management Science. Vol. 17(4), pp. 141–164, 1970. 10.1142/9789812819789_0004
III. Bera U. K., & Maiti A. K., : ‘A soft-computing approach to multi-item fuzzy EOQ model incorporating discount’. International Journal of Information and Decision Sciences. Vol. 4(4), pp. 313–328, 2012. 10.1504/IJIDS.2012.050376
IV. Chen S. H., : ‘Operations on fuzzy numbers with function principle’. Tamkang Journal of Management Sciences. Vol. 6(1), pp. 13–25, 1986.
V. Chen S. H. & Hsieh C. H., : ‘Optimization of fuzzy backorder inventory models’. IEEE International Fuzzy System Conference (Seoul, Korea) Proceedings. Vol. 1, pp. 470–480, 1999. 10.1109/ICSMC.1999.815564
VI. Chen S. H. & Hsieh C. H., : ‘Representation, ranking, distance, and similarity of L-R type fuzzy number and application’. Australian Journal of Intelligent Information Processing Systems. Vol. 6(4), pp. 217–229, 2000.
VII. Dubois D., & Prade H., : ‘Fuzzy Sets and Systems: Theory and Applications’. Academic Press. NY, pp. 71-73, 1980.
VIII. Garai T., Chakraborty D., & Roy T. K., : ‘Fully fuzzy inventory model with price-dependent demand and time varying holding cost under fuzzy decision variables’. Journal of Intelligent and Fuzzy Systems. Vol. 36(4), pp. 3725–3738, 2019. 10.3233/JIFS-18379
IX. Huang T. S., Yang M. F., Chao Y. S., Yan Kei, E. S., & Chung, W. H., : ‘Fuzzy supply chain integrated inventory model with quantity discounts and unreliable process in uncertain environments’. Lecture Notes in Engineering and Computer Science. Vol. 2, pp. 14–19, 2018.
X. Indrajitsingha S. K., : ‘A fuzzy inventory model for linear deteriorating items with selling price dependent demand and allowable shortages under partially backlogged condition’. International Journal of Procurement Management. Vol. 12(4), pp. 457–474, 2019. 10.1504/IJPM.2019.101245
XI. Jaggi C. K., Pareek S., Sharma A., & hi N., : ‘Fuzzy Inventory Model for Deteriorating Items with Time-varying Demand and Shortages’. American Journal of Operational Research. Vol. 2(6), pp. 81–92, 2012. 10.5923/j.ajor.20120206.01
XII. Kaufmann A. and Gupta M. M., : ‘Introduction to Fuzzy Arithmetic Theory and Applications’. International Thomson Computer Press, USA., 1991.
XIII. Khan M. A. A., Ahmed S., Babu M. S., & Sultana, N., : ‘Optimal lot-size decision for deteriorating items with price-sensitive demand, linearly time-dependent holding cost under all-units discount environment’. International Journal of Systems Science: Operations and Logistics. Vol. 9(1), pp. 61–74, 2022. 10.1080/23302674.2020.1815892
XIV. Kristiyani I. M., & Daryanto Y., : ‘An Inventory Model Considering All Unit Discount and Carbon Emissions’. International Journal of Industrial Engineering and Engineering Management. Vol. 1(2), pp. 43–50, 2019. 10.24002/ijieem.v1i2.3410
XV. Kumar N., & Kumar S., : ‘An inventory model for deteriorating items with partial backlogging using linear demand in fuzzy environment’. Cogent Business and Management. Vol. 4(1), pp. 1307687, 2017. 10.1080/23311975.2017.1307687
XVI. Limansyah T., & Lesmono D., : ‘Probabilistic Inventory Model with Expiration Date and All-Units Discount’. IOP Conference Series: Materials Science and Engineering. Vol. 546(5), pp. 052042, 2019. 10.1088/1757-899X/546/5/052042
XVII. Maragatham M., & Lakshmidevi P. K., : ‘A Fuzzy Inventory Model for Deteriorating Items with Price Dependent Demand’. International Journal of Fuzzy Mathematical Archive. Vol. 5(1), pp. 39-47, 2014.
XVIII. Rani N., & Kumar V., : ‘An Fuzzy Inventory Model for Decaying Items with a Demand-Dependent Selling Price as a Degree n Polynomial, Linear Deterioration Rate, and Constant Holding Cost’. International Journal of Engineering Research and Technology (IJERT), Vol. 10(10), pp. 42–46, 2021.
XIX. Roy A., : ‘Fuzzy inventory model for deteriorating items with price dependent demand’. International Journal of Management Science and Engineering Management. Vol. 10(4), pp. 237–241, 2015. 10.1080/17509653.2014.959086
XX. Saha S., : ‘Fuzzy Inventory Model for Deteriorating Items in a Supply Chain System with Price Dependent Demand and Without Backorder’. American Journal of Engineering Research (AJER). Vol. 6(6), pp. 183–187, 2017.
XXI. Saha S., & Chakrabarti T., : ‘A Fuzzy Inventory Model for Deteriorating Items with Linear Price Dependent Demand in a Supply Chain’. International Journal of Fuzzy Mathematical Archive. Vol. 13(1), pp. 59–67, 2017.
XXII. Sahoo N. K., Mohanty B. S., & Tripathy P. K., : ‘Fuzzy inventory model with exponential demand and time-varying deterioration’. Global Journal of Pure and Applied Mathematics. Vol. 12(3), pp. 2573–2589, 2016.
XXIII. Shah N. H., Rabari K., & Patel E., : ‘Greening efforts and deteriorating inventory policies for price-sensitive stock-dependent demand’. International Journal of Systems Science: Operations and Logistics. Vol. 10(1), 2022808, 2023. 10.1080/23302674.2021.2022808
XXIV. Shah N. H., & Soni H., : ‘Continuous review inventory model for fuzzy price dependent demand’. International Journal of Modelling in Operations Management. Vol. 1(3), pp. 209–222, (]2011. 10.1504/ijmom.2011.039527
XXV. Shaikh A. A., Bhunia A. K., Cárdenas-Barrón L. E., Sahoo L., & Tiwari S., : ‘A Fuzzy Inventory Model for a Deteriorating Item with Variable Demand, Permissible Delay in Payments and Partial Backlogging with Shortage Follows Inventory (SFI) Policy’. International Journal of Fuzzy Systems. Vol. 20(5), pp. 1606–1623, 2018. 10.1007/s40815-018-0466-7
XXVI. Shaikh A. A., Khan M. A.-A., Panda G. C., & Konstantaras I., : ‘Price discount facility in an EOQ model for deteriorating items with stock-dependent demand and partial backlogging’. International Transactions in Operational Research. Vol. 26(4), pp. 1365–1395, 2019. 10.1111/itor.12632
XXVII. Shaikh T. S., & Gite S. P., : ‘Fuzzy Inventory Model with Variable Production and Selling Price Dependent Demand under Inflation for Deteriorating Items’. American Journal of Operations Research. Vol. 12(6), pp. 233–249, 2022. 10.4236/ajor.2022.126013
XXVIII. Sharmila D., & Uthayakumar R., : ‘Inventory Model for Deteriorating Items Involving Fuzzy with Shortages and Exponential Demand’. International Journal of Supply and Operations Management, IJSOM. Vol. 2(3), pp. 888–904, 2015. 10.22034/2015.3.05
XXIX. Taleizadeh A. A., & Pentico D. W., : ‘An Economic Order Quantity model with partial backordering and all-units discount’. International Journal of Production Economics. Vol. 155, pp. 172–184, 2014. 10.1016/j.ijpe.2014.01.012
XXX. Varadharajan R., & Sangma F. A., : ‘Fuzzy EOQ Model for Deteriorating Items with Price Dependent Demand using Graded Mean Integration Value’. International Journal of Pure and Applied Mathematics. Vol. 119(9), pp. 351–361, 2018.
XXXI. Zadeh L. A., : ‘Fuzzy Sets’. Information and Control. Vol. 8(3), pp. 338-353, 1965.
XXXII. Zadeh L. A., : ‘Outline of a New Approach to the Analysis of Complex Systems and Decision Processes’. IEEE Transactions on Systems, Man and Cybernetics, SMC. Vol. 3(1), pp. 28–44, 1973. 10.1109/TSMC.1973.5408575