OPTICAL 4:1 MULTIPLEXER USING SAGNAC SWITCHES

Authors:

Dilip Kumar Gayen,Arunava Bhattacharyya,

DOI NO:

https://doi.org/10.26782/jmcms.2023.06.00002

Keywords:

Optical communication,multiplexer,Sagnac Switches,Terahertz Optical Asymmetric Demultiplexers (TOADs),signal routing,signal demultiplexing,insertion loss,extinction ratio,crosstalk,optical networks,

Abstract

This paper presents the design and implementation of an Optical 4:1 Multiplexer using Sagnac Switches as Terahertz Optical Asymmetric Demultiplexers (TOADs). Optical multiplexers play a crucial role in modern communication systems by combining multiple signals onto a single optical channel. The proposed multiplexer architecture leverages the benefits of Sagnac Switches, such as low insertion loss, high extinction ratio, and low crosstalk, along with TOADs to achieve efficient signal routing and demultiplexing. The design is evaluated through simulations, demonstrating its performance in terms of insertion loss, extinction ratio, and crosstalk. The experimental validation of the multiplexer verifies its effectiveness in real-world scenarios. The Optical 4:1 Multiplexer using Sagnac Switches as TOADs offers a promising solution for optical communication networks, enabling efficient signal multiplexing and demultiplexing while maintaining high data integrity and low signal degradation.

Refference:

I. C. S. Pittala, V. Vijay and Reddy, B.N.K. : “1-Bit FinFET Carry Cells for Low Voltage High-Speed Digital Signal Processing Applications”, Silicon 15, 713–724, 2023. 10.1007/s12633-022-02016-8.
II. D. K. Gayen. “Optical Multiplexer”. J. Mech. Cont. & Math. Sci., Vol.-18, No.-03, March (2023) pp 32-42. 10.26782/jmcms.2023.03.00003
III. El-Hageen, Hazem M., Alatwi, Aadel M. and Zaki Rashed, Ahmed Nabih. : “High-speed signal processing and wideband optical semiconductor amplifier in the optical communication systems”, Journal of Optical Communications, pp. 000010151520200070, 2020. 10.1515/joc-2020-0070.
IV. H. Furukawa et al., : “Demonstration of 10 Gbit Ethernet/Optical-Packet Converter for IP Over Optical Packet Switching Network.” Journal of Lightwave Technology, vol. 27, no. 13, pp. 2379-2380, July 1, 2009. 10.1109/JLT.2008.2010063.
V. I. S. Choi, Jongseon Park, Hoon Jeong, Ji Won Kim, Min Yong Jeon, and Hong-Seok Seo. : “Fabrication of 4 × 1 signal combiner for high-power lasers using hydrofluoric acid,” Opt. Express 26, 30667-30677, 2018. 10.1364/OE.26.030667
VI. J. H. Huh, H. Homma, H. Nakayama and Y. Maeda. : “All optical switching triode based on cross-gain modulation in semiconductor optical amplifier,” Photonics in Switching, San Francisco, CA, USA, pp. 73-74, 2007.
VII. J. M. Tang, P. S. Spencer, P. Rees and K. A. Shore. : “Pump-power dependence of transparency characteristics in semiconductor optical amplifiers,” IEEE Journal of Quantum Electronics, vol. 36, no. 12, pp. 1462-1467, Dec. 2000.
VIII. J. P. Sokoloff, P. R. Prucnal, I. Glesk and M. Kane. : “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photonics Technology Letters, vol. 5, no. 7, pp. 787-790, July 1993.
IX. K. Christodoulopoulos, I. Tomkos and E. Varvarigos. : “Dynamic bandwidth allocation in flexible OFDM-based networks,” Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Los Angeles, CA, USA, 2011, pp. 1-3 2011.
X. Lei Xu, I. Glesk, V. Baby and P. R. Prucnal. : “All-optical wavelength conversion using SOA at nearly symmetric position in a fiber-based sagnac interferometric loop,” IEEE Photonics Technology Letters, vol. 16, no. 2, pp. 539-541, Feb. 2004.
XI. M. F. C. Stephens, M. Asghari, R. V. Penty and I. H. White. : “Demonstration of ultrafast all-optical wavelength conversion utilizing birefringence in semiconductor optical amplifiers,” IEEE Photonics Technology Letters, vol. 9, no. 4, pp. 449-451, April 1997.

XII. N. Bai, Ezra Ip, Yue-Kai Huang, Eduardo Mateo, Fatih Yaman, Ming-Jun Li, Scott Bickham, Sergey Ten, Jesús Liñares, Carlos Montero, Vicente Moreno, Xesús Prieto, Vincent Tse, Kit Man Chung, Alan Pak Tao Lau, Hwa-Yaw Tam, Chao Lu, Yanhua Luo, Gang-Ding Peng, Guifang Li, and Ting Wang. : “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express 20, 2668-2680, 2012.
XIII. S. Soysouvanh, Phongsanam, P., Mitatha, S. et al. : “Ultrafast all-optical ALU operation using a soliton control within the cascaded InGaAsP/InP microring circuits.” Microsyst Technol 25, 431–440, 2019.
XIV. V. M. Menon et al. : “All-optical wavelength conversion using a regrowth-free monolithically integrated Sagnac interferometer,” IEEE Photonics Technology Letters, vol. 15, no. 2, pp. 254-256, Feb. 2003.
XV. V. Sasikala, Chitra, K. : “All optical switching and associated technologies: a review.” J Opt 47, 307–317, 2018.
XVI. Y. Liu, E. Tangdiongga, Z. Li, Shaoxian Zhang, Huug de Waardt, G. D. Khoe, and H. J. S. Dorren. : “Error-Free All-Optical Wavelength Conversion at 160 Gb/s Using a Semiconductor Optical Amplifier and an Optical Bandpass Filter,” J. Lightwave Technol. 24, 230-,2006.
XVII. Y. Xiao, F. Brunet, M. Kanskar, M. Faucher, A. Wetter, and N. Holehouse. : “1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks,” Opt. Express 20, 3296-3301, 2012.

View Download