Influence of Lime on Low Plastic Clay Soil Used as Subgrade

Authors:

Adnan Asad,ArshadHussain,Abdul Farhan,Adeel Ahmed Bhatti,Mehr-E-Munir,

DOI NO:

https://doi.org/10.26782/jmcms.2019.02.00005

Keywords:

Soil Stabilization,Lime,Subgrade Stabilization,Low Plastic Clay,

Abstract

Weak clayey soil can cause premature failure in subgrade so their removal or proper treatment is necessary for the efficiency of structure. Soil stabilization is an excellent choice and economical in many circumstances for treatment and proper behavior of weak subgrade soil as recommended by many researchers. Lime is the oldest and well known additive for stabilization of many type of soils. This paper presents geotechnical investigation of low plastic clay soil being used as subgrade stabilized with lime. The low plastic clayey subgrade soil was stabilized with different percentages of lime and results show that soil can be satisfactorily stabilized with the addition of 6% lime. The Atterberg’s limit, compaction characteristics and strength tests including unconfined compressive strength (UCS) and California bearing ratio (CBR) tests were performed. Results indicate that addition of lime reduce plasticity index. An increase in OMC was observed with the decrease in maximum dry density (MDD). CBR and unconfined compressive strength of soil (qu)values improved significantly with the addition of lime.

Refference:

I.Al-Rawas, A. A., Hago, A. W., & Al-Sarmi, H. (2005). Effect of lime, cement and Sarooj (artificial pozzolan) on the swelling potential of an expansive soil from Oman.Building and Environment,40(5), 681-687.

II.Eisazadeh, A., Kassim, K. A., & Nur, H. (2012). Solid-state NMR and FTIR studies of lime stabilized montmorillonitic and lateritic clays.Applied Clay Science,67, 5-10.

III.Ghobadi, M. H., Abdilor, Y., & Babazadeh, R. (2014). Stabilization of clay soils usinglime and effect of pH variations on shear strength parameters.Bulletin of Engineering Geology and the Environment,73(2), 611-619.

IV.Harichane, K., Ghrici, M., Kenai, S., & Grine, K. (2011). Use of natural pozzolana and lime for stabilization of cohesive soils.Geotechnical and geological engineering,29(5), 759-769.

V.Ingles, O. G., & Metcalf, J. B. (1972).Soil stabilization principles and practice(Vol. 11, No. Textbook).

VI.Little, D. N., Thompson, M. R., Terrell, R. L., Epps, J. A., & Barenberg, E. J. (1987).Soil stabilization for roadways and airfields. LITTLE (DALLAS N) AND ASSOCIATES BRYAN TX.

VII.Murthy, V. N. S. (2002).Geotechnical engineering: principles and practices of soil mechanics and foundation engineering. CRC press.

VIII. Muhmed, A., & Wanatowski, D. (2013). Effect of Lime Stabilisation on the Strength and Microstructure of Clay IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2320-334X.Volume6, Issue3.

IX.Osinubi, K. J., Bafyau, V., & Eberemu, A. O. (2009). Bagasse ash stabilization of lateritic soil. InAppropriate Technologies for Environmental Protection in the Developing World(pp. 271-280). Springer, Dordrecht.

X.Rogers, C. D. F., Glendinning, S., & Roff, T. E. J. (1997, October). Lime modification of clay soils for construction expediency. InProceedings of the Institution of Civil Engineers: Geotechnical Engineering(Vol. 125, No. 4).

XI.Tuncer, E. R., & Basma, A. A. (1991). Strength and stress-strain characteristics of a lime-treated cohesive soil.Transportation Research Record, (1295).

Adnan Asad, ArshadHussain, Abdul Farhan, Adeel Ahmed Bhatti, Mehr-E-Munir View Download