Authors:
Muhammad Nabeel Amin,Shreeraz Memon,Arshad Ali,Hamayun Khan,Roshan Joshi,Muhammad Tausif Afzal Rana,Yazed ALsaawy,DOI NO:
https://doi.org/10.26782/jmcms.2024.09.00014Keywords:
Accuracy Rates,Agricultural Parameters,Convolutional Neural Network (CNN),Crop Recommendation Systems,Precision Agriculture,Abstract
Machine learning-based crop recommendation models are invaluable tools for enhancing modern AI-based farming, assisting in decisions about the selection of crops to optimize yield performance and growth. This research introduces an intelligent strategy and explainable artificial intelligence (XAI) principles based on the Convolutional Neural Network (CNN) method due to the growing demand for interpretability in modern farming decision-making, Utilizing the "Smart Agricultural Production Optimizing Engine” dataset procured from Kaggle. The proposed CNN model gives remarkable results through a comprehensive examination of soil and environmental boundaries like Nitrogen (N), Phosphorus (P), Potassium (K) levels, temperature, moistness, pH, and precipitation. Our results illustrate that the proposed framework essentially moves forward the precision of trim suggestions, advertising a promising arrangement for modernizing agricultural practices and guaranteeing maintainable crop yields.Refference:
I. Anand, T., Sinha, S., Mandal, M., Chamola, V., & Yu, F. R. (2021). AgriSegNet: Deep aerial semantic segmentation framework for IoT-assisted precision agriculture. IEEE Sensors Journal, 21(16), 17581-17590.
II. Jin, X. B., Yu, X. H., Wang, X. Y., Bai, Y. T., Su, T. L., & Kong, J. L. (2020). Deep learning predictor for sustainable precision agriculture based on Internet of things system. Sustainability, 12(4), 1433.
III. Asish Mitra, Numerical Simulation Of Laminar Convection Flow And Heat Transfer At The Lower Stagnation Point Of A Solid Sphere., J. Mech. Cont.& Math. Sci., Vol.10, No.1, Pp 1469-1480, 2015
IV. Anguraj K, Thiyaneswaran B, Megashree G, Shri JP, Navya S, Jayanthi J. Crop recommendation on analyzing soil using machine learning. Turkish Journal of Computer and Mathematics Education. 2021; 12(6):1784-91.
V. Bhadouria R, et al. (2019) Agriculture in the era of climate change: Consequences and effects. In Climate Change and Agricultural Ecosystems, Elsevier, 1–23.
VI. Barburiceanu, S., Meza, S., Orza, B., Malutan, R., & Terebes, R. (2021). Convolutional neural networks for texture feature extraction. Applications to leaf disease classification in precision agriculture. IEEE Access, 9, 160085-160103.
VII. Bakthavatchalam K, Karthik B, Thiruvengadam V, Muthal S, Jose D, Kotecha K, et al. IoT framework for measurement and precision agriculture: predicting the crop using machine learning algorithms. Technologies. 2022; 10(1).
VIII. Hassan, H. Khan, I. Uddin, A. Sajid, “Optimal Emerging trends of Deep Learning Technique for Detection based on Convolutional Neural Network”, Bulletin of Business and Economics (BBE), Vol.12, No.4, pp. 264-273, 2023
IX. H. Khan, A. Ali, S. Alshmrany, “Energy-Efficient Scheduling Based on Task Migration Policy Using DPM for Homogeneous MPSoCs”, Computers, Materials & Continua, Vol.74, No.1, pp. 965-981, 2023
X. H. Sarwar, H. Khan, I. Uddin, R. Waleed, S. Tariq, “An Efficient E-Commerce Web Platform Based on Deep Integration of MEAN Stack Technologies”, Bulletin of Business and Economics (BBE), Vol. 12, No.4, pp. 447-453, 2023.
XI. Hammad. A , E. Zhao, “Mitigating link insecurities in smart grids via QoS multi-constraint routing“, In 2016 IEEE International Conference on Communications Workshops (ICC)”, pp. 380-386. 2016
XII. H. Khan, I. Uddin, A. Ali, M. Husain, “An Optimal DPM Based Energy-Aware Task Scheduling for Performance Enhancement in Embedded MPSoC” Computers, Materials & Continua, Vol.74, No.1, pp. 2097-2113, 2023
XIII. Hammad, A. A., Ahmed, “Deep Reinforcement Learning for Adaptive Cyber Defense in Network Security”, In Proceedings of the Cognitive Models and Artificial Intelligence Conference, pp. 292-297, 2016
XIV. H. Khan, M. U. Hashmi, Z. Khan, R. Ahmad, “Offline Earliest Deadline first Scheduling based Technique for Optimization of Energy using STORM in Homogeneous Multi-core Systems,” IJCSNS Int. J. Comput. Sci. Netw. Secure, Vol.18, No.12, pp 125-130, 2018
XV. Hossein Shirazi, Bruhadeshwar. B,”Kn0w Thy Doma1n Name”: Unbiased Phishing Detection Using Domain Name Based Features. In Proceedings Of The 23nd Acm On Symposium On Access Control Models And Technologies (Sacmat ’18). Association For Computing Machinery, New York, NY, USA, pp. 69-75, 2018
XVI. Hussain, S., Rajput, U. A., Kazi, Q. A., & Mastoi, S, “Numerical investigation of thermohydraulic performance of triple concentric-tube heat exchanger with longitudinal fins”, J. Mech. Cont. & Math. Sci, Vol. 16, No. 8, pp 61-73, 2021.
XVII. H. Khan, S. Ahmad, N. Saleem, M. U. Hashmi, Q. Bashir, “Scheduling Based Dynamic Power Management Technique for offline Optimization of Energy in Multi Core Processors” Int. J. Sci. Eng. Res, Vol.9, No.12, pp 6-10, 2018
XVIII. H. Khan, K. Janjua, A. Sikandar, M. W. Qazi, Z. Hameed, “An Efficient Scheduling based cloud computing technique using virtual Machine Resource Allocation for efficient resource utilization of Servers” In 2020 International Conference on Engineering and Emerging Technologies (ICEET), IEEE, pp 1-7, 2020
XIX. Hammad, M., Jillani, R. M., Ullah, S., Namoun, A., Tufail, A., Kim, K. H., & Shah, H, “Security framework for network-based manufacturing systems with personalized customization”, An industry 4.0 approach, Sensors, vol. 23. No. 17-55, 2022
XX. H. Khan, Q. Bashir, M. U. Hashmi, “Scheduling based energy optimization technique in multiprocessor embedded systems” In 2018 International Conference on Engineering and Emerging Technologies (ICEET), IEEE, pp 1-8, 2018
XXI. H. Khan, A. Yasmeen, S. Jan, U. Hashmi, “Enhanced Resource Leveling Indynamic Power Management Techniqueof Improvement In Performance For Multi-Core Processors”, Journal Of Mechanics Of Continua And Mathematical Sciences, Vol.6, No.14, pp. 956-972, 2019
XXII. H. Khan, K. Janjua, A. Sikandar, M. W. Qazi, Z. Hameed, “An Efficient Scheduling based cloud computing technique using virtual Machine Resource Allocation for efficient resource utilization of Servers” In 2020 International Conference on Engineering and Emerging Technologies (ICEET), IEEE, pp 1-7, 2020
XXIII. H. Huang, J. Tan And L. Liu, “Countermeasure Techniques For Deceptive Phishing Attack”, International Conference On New Trends In Information And Service Science, Beijing, pp. 636-641, 2009.
XXIV. H. Khan, M. U. Hashmi, Z. Khan, R. Ahmad, “Offline Earliest Deadline first Scheduling based Technique for Optimization of Energy using STORM in Homogeneous Multi-core Systems” IJCSNS Int. J. Comput. Sci. Netw. Secure, Vol.18, No.12, pp 125-130, 2018
XXV. H. Khan, M. U. Hashmi, Z. Khan, R. Ahmad, A. Saleem, “Performance Evaluation for Secure DES-Algorithm Based Authentication & Counter Measures for Internet Mobile Host Protocol” IJCSNS Int. J. Comput. Sci. Netw. Secure, Vol.18, No.12, pp 181-185, 2018
XXVI. M. Y. A. Khan, F. Khan, H. Khan, S. Ahmed, M. Ahmad, “Design and Analysis of Maximum Power Point Tracking (MPPT) Controller for PV System” Journal of Mechanics of Continua and Mathematical Sciences, Vol.14, No.1, pp 276-288, 2019
XXVII. M. Y. A. Khan, “A GSM based Resource Allocation technique to control Autonomous Robotic Glove for Spinal Cord Implant paralysed Patients using Flex Sensors”, Sukkur IBA Journal of Emerging Technologies, Vol.3, No.2, pp 13-23, 2020
XXVIII. M. Y. A. Khan, “A high state of modular transistor on a 105 kW HVPS for X-rays tomography Applications”, Sukkur IBA Journal of Emerging Technologies, Vol.2, No.2, pp 1-6, 2019
XXIX. M. Shah, S. Ahmed, K. Saeed, M. Junaid, H. Khan, “Penetration testing active reconnaissance phase–optimized port scanning with nmap tool” In 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), IEEE, pp 1-6, 2019
XXX. M. Y. A. Khan, M. Ibrahim, M. Ali, H. Khan, E. Mustafa, “Cost-Benefit Based Analytical Study of Automatic Meter Reading (AMR) and Blind Meter Reading (BMR) used by PESCO (WAPDA),” In 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), IEEE, pp 1-7, 2020
XXXI. M. Y. A. Khan, “Enhancing Energy Efficiency in Temperature Controlled Dynamic Scheduling Technique for Multi-Processing System on Chip” Sukkur IBA Journal of Emerging Technologies, Vol.2, No.2, pp 46-53,2019
XXXII. M. U. Hashmi, S. A. ZeeshanNajam, “Thermal-Aware Real-Time Task Schedulabilty test for Energy and Power System Optimization using Homogeneous Cache Hierarchy of Multi-core Systems” Journal of Mechanics of Continua and Mathematical Sciences, Vol.14, No.4, pp 442-452, 2023
XXXIII. M. Y. A. Khan, U. Khalil, H. Khan, A. Uddin, S. Ahmed, “Power flow control by unified power flow controller” Engineering, Technology & Applied Science Research, Vol.9, No.2, pp 3900-3904, 2019
XXXIV. R. Waleed, A. Ali, S. Tariq, G. Mustafa, H. Sarwar, S. Saif, I. Uddin, “An Efficient Artificial Intelligence (AI) and Internet of Things (IoT’s) Based MEAN Stack Technology Applications” Bulletin of Business and Economics (BBE), Vol.13, No.2, pp 200-206, 2024
XXXV. S. Khan, I. Ullah, M. U. Rahman, H. Khan, A. B. Shah, R. H. Althomali, M. M. Rahman, “Inorganic-polymer composite electrolytes: basics, fabrications, challenges and future perspectives” Reviews in Inorganic Chemistry, Vol.44, No.3, pp 1-29, 2024.
XXXVI. S. Khan, I. Ullah, H. Khan, F. U. Rahman, M. U. Rahman, M. A. Saleem, A. Ullah, “Green synthesis of AgNPs from leaves extract of Salvia Sclarea their characterization, antibacterial activity and catalytic reduction ability” Zeitschrift für Physikalische Chemie, Vol.238, No.5, pp 931-947, 2024