Effect of radius and angle of bending on the concentration of stresses in the Aluminum sheet

Authors:

Jenan Mohammed Naje,

DOI NO:

http://doi.org/10.26782/jmcms.2019.10.00028

Keywords:

bending activity,stress concentration,optimization methodology of the metal formation,aluminum sheet,

Abstract

Using metals in the industry is widely utilized and have the properties which make it possible to expose it to heat, high force and punch, flexion and modelling. The fore most goal of this study is to deliberate the reported studies about the influence of radius and angle of bending on the concentration of stresses in Aluminum sheet. This research is a quantitative research which is made through reviewing other articles and researches which is concerned with the objective of this article and its applications. Studies and researches were made in order to optimize the methodology of the metal formation to make it less power and time consuming with better formation and less errors.

Refference:

I. ABLAT, M. A. & QATTAWI, A. 2017. Numerical simulation
of sheet metal forming: a review. The international journal of
advanced manufacturing technology, 89, 1235-1250.
II. BAHLOUL, R., MKADDEM, A., DAL SANTO, P. &
POTIRON, A. 2006. Sheet metal bending optimisation using
response surface method, numerical simulation and design of
experiments. International journal of mechanical sciences, 48,
991-1003.
III. BAKHSHI-JOOYBARI, M., RAHMANI, B., DAEEZADEH,
V. & GORJI, A. 2009. The study of spring-back of CK67 steel
sheet in V-die and U-die bending processes. Materials &
Design, 30, 2410-2419.
IV. BERNEDER, J., PRILLHOFER, R., ENSER, J., RANK, G. &
GROHMANN, T. Characterization of AMAG AL6-CHA sheet
material for Chassis application in the automotive industry.
Materials Science Forum, 2014. Trans Tech Publ, 437-442.
V. BURGER, G., GUPTA, A., JEFFREY, P. & LLOYD, D. 1995.
Microstructural control of aluminum sheet used in automotive
applications. Materials Characterization, 35, 23-39.
VI. CHAN, W., CHEW, H., LEE, H. & CHEOK, B. 2004. Finite
element analysis of spring-back of V-bending sheet metal
forming processes. Journal of materials processing technology,
148, 15-24.

VII. COURT, S., GATENBY, K. & LLOYD, D. 2001. Factors
affecting the strength and formability of alloys based on Al–3
wt.% Mg. Materials Science and Engineering: A, 319, 443-447.
VIII. DE CODES, R. N., HOPPERSTAD, O., ENGLER, O.,
LADEMO, O.-G., EMBURY, J. & BENALLAL, A. 2011.
Spatial and temporal characteristics of propagating deformation
bands in AA5182 alloy at room temperature. Metallurgical and
Materials Transactions A, 42, 3358-3369.
IX. ENGLER, O., LIU, Z. & KUHNKE, K. 2013. Impact of
homogenization on particles in the Al–Mg–Mn alloy AA 5454–
Experiment and simulation. Journal of Alloys and Compounds,
560, 111-122.
X. ESAT, V., DARENDELILER, H. & GOKLER, M. I. 2002. Finite
element analysis of springback in bending of aluminium sheets.
Materials & design, 23, 223-229.
XI. FU, Z., TIAN, X., CHEN, W., HU, B. & YAO, X. 2013.
Analytical modeling and numerical simulation for three-roll
bending forming of sheet metal. The International Journal of
Advanced Manufacturing Technology, 69, 1639-1647.
XII. GANDHI, A. & RAVAL, H. 2008. Analytical and empirical
modeling of top roller position for three-roller cylindrical
bending of plates and its experimental verification. Journal of
materials processing technology, 197, 268-278.
XIII. GARCIA-ROMEU, M., CIURANA, J. & FERRER, I. 2007.
Springback determination of sheet metals in an air bending
process based on an experimental work. Journal of Materials
Processing Technology, 191, 174-177.
XIV. GUPTA, A., LLOYD, D. & COURT, S. 2001. Precipitation
hardening in Al–Mg–Si alloys with and without excess Si.
Materials Science and Engineering: A, 316, 11-17.
XV. HIRSCH, J. Aluminium alloys for automotive application.
Materials Science Forum, 1997. Trans Tech Publ, 33-50.
XVI. HIRTH, S., MARSHALL, G., COURT, S. & LLOYD, D. 2001.
Effects of Si on the aging behaviour and formability of aluminium alloys based on AA6016. Materials Science and
Engineering: A, 319, 452-456.
XVII. HU, W. & WANG, Z. 2001. Theoretical analysis and
experimental study to support the development of a more
valuable roll-bending process. International Journal of
Machine Tools and Manufacture, 41, 731-747.
XVIII. HUA, M. & LIN, Y. 1999. Large deflection analysis of
elastoplastic plate in steady continuous four-roll bending
process. International Journal of Mechanical Sciences, 41,
1461-1483.
XIX. KIM, H.-W. & LIM, C.-Y. 2010. Annealing of flexible-rolled
Al–5.5 wt% Mg alloy sheets for auto body application.
Materials & Design, 31, S71-S75.
XX. KTARI, A., ANTAR, Z., HADDAR, N. & ELLEUCH, K.
2012. Modeling and computation of the three-roller bending
process of steel sheets. Journal of Mechanical Science and
Technology, 26, 123-128.
XXI. MILLER, W., ZHUANG, L., BOTTEMA, J., WITTEBROOD,
A. J., DE SMET, P., HASZLER, A. & VIEREGGE, A. 2000.
Recent development in aluminium alloys for the automotive
industry. Materials Science and Engineering: A, 280, 37-49.
XXII. MKADDEM, A. & SAIDANE, D. 2007. Experimental
approach and RSM procedure on the examination of springback
in wiping-die bending processes. Journal of Materials
Processing Technology, 189, 325-333.
XXIII. NASROLLAHI, V. & AREZOO, B. 2012. Prediction of
springback in sheet metal components with holes on the
bending area, using experiments, finite element and neural
networks. Materials & Design (1980-2015), 36, 331-336.
XXIV. OSTERMANN, F. 2007. Anwendungstechnologie Aluminium
Springer-Verlag. Berlin.
XXV. PANTHI, S. & RAMAKRISHNAN, N. 2011. Semi analytical
modeling of springback in arc bending and effect of forming
load. Transactions of Nonferrous Metals Society of China, 21,
2276-2284.

XXVI. PANTHI, S., RAMAKRISHNAN, N., AHMED, M., SINGH,
S. S. & GOEL, M. 2010. Finite element analysis of sheet metal
bending process to predict the springback. Materials & Design,
31, 657-662.
XXVII. PANTHI, S., RAMAKRISHNAN, N., PATHAK, K. &
CHOUHAN, J. 2007. An analysis of springback in sheet metal
bending using finite element method (FEM). Journal of
Materials Processing Technology, 186, 120-124.
XXVIII. REYES, A., HOPPERSTAD, O. S., LADEMO, O.-G. &
LANGSETH, M. 2006. Modeling of textured aluminum alloys
used in a bumper system: Material tests and characterization.
Computational Materials Science, 37, 246-268.
XXIX. SALEM, J., CHAMPLIAUD, H., FENG, Z. & DAO, T.-M.
2016. Experimental analysis of an asymmetrical three-roll
bending process. The International Journal of Advanced
Manufacturing Technology, 83, 1823-1833.
XXX. SHARAD, G. & NANDEDKAR, V. 2014. Springback in sheet
metal U bending-FEA and neural network approach. Procedia
materials science, 6, 835-839.
XXXI. SIDEBOTTOM, O. & GEBHARDT, C. 1979. Elastic
springback in plates and beams formed by bending.
Experimental Mechanics, 19, 371-377.
XXXII. TAJALLY, M. & EMADODDIN, E. 2011. Mechanical and
anisotropic behaviors of 7075 aluminum alloy sheets. Materials
& Design, 32, 1594-1599.
XXXIII. TAN, Z., LI, W. B. & PERSSON, B. 1994. On analysis and
measurement of residual stresses in the bending of sheet metals.
International Journal of Mechanical Sciences, 36, 483-491.
XXXIV. TRAN, Q. H., CHAMPLIAUD, H., FENG, Z. & DAO, T. M.
2014. Analysis of the asymmetrical roll bending process
through dynamic FE simulations and experimental study. The
International Journal of Advanced Manufacturing Technology,
75, 1233-1244.
XXXV. WANG, X., EMBURY, J., POOLE, W., ESMAEILI, S. &
LLOYD, D. 2003. Precipitation strengthening of the aluminum alloy AA6111. Metallurgical and Materials Transactions A, 34,
2913-2924.
XXXVI. WANG, Y., ZHU, X., WANG, Q. & CUI, X. 2019. Research
on multi-roll roll forming process of thick plate. The
International Journal of Advanced Manufacturing Technology,
102, 17-26.
XXXVII. XUE, P., YU, T. & CHU, E. 2001a. An energy approach for
predicting springback of metal sheets after double-curvature
forming, Part I: axisymmetric stamping. International journal
of mechanical sciences, 43, 1893-1914.
XXXVIII. XUE, P., YU, T. & CHU, E. 2001b. An energy approach for
predicting springback of metal sheets after double-curvature
forming, Part II: Unequal double-curvature forming.
International journal of mechanical sciences, 43, 1915-1924.
XXXIX. YANG, M. & SHIMA, S. 1988. Simulation of pyramid type
three-roll bending process. International Journal of Mechanical
Sciences, 30, 877-886.
XL. YU, G., ZHAO, J., ZHAI, R., MA, R. & WANG, C. 2018.
Theoretical analysis and experimental investigations on the
symmetrical three-roller setting round process. The
International Journal of Advanced Manufacturing Technology,
94, 45-56.
XLI. ZENG, J., LIU, Z. & CHAMPLIAUD, H. 2008. FEM dynamic
simulation and analysis of the roll-bending process for forming
a conical tube. Journal of materials processing technology, 198,
330-343.
XLII. ZHAO, W., LIAO, T. W. & KOMPOTIATIS, L. 2017. Stress
and Springback Analyses of API X70 Pipeline Steel Under 3-
Roller Bending via Finite Element Method. Acta Metallurgica
Sinica (English Letters), 30, 470-482.

View Download