Authors:
Eun Heo,Yoo-Shin Park,Tae-Hoon Kim,Byung-Chan Min,DOI NO:
https://doi.org/10.26782/jmcms.2025.03.00008Keywords:
Diagnostic Methodologies,Quadratic Discriminant Analysis (QDA),Temporal Dynamics,Thyroid Cancer,Time Series Analysis,TIRADS Classification,Abstract
Thyroid cancer, a prevalent and potentially life-threatening disease, demands early detection for effective treatment. This study proposes a novel approach for the early detection of thyroid cancer by employing Time Series Analysis (TSA) and Quadratic Discriminant Analysis (QDA). The integration of these techniques aims to enhance diagnostic accuracy and reliability, providing a valuable tool for clinicians to detect the disease in its early stages. In our approach, TSA was used to extract meaningful patterns and trends from temporal data, offering valuable insights into the evolving health status of the thyroid. Subsequently, QDA was applied to build a robust classification model, using the identified time series features to distinguish between cancerous and non-cancerous cases. The application of TSA and QDA yielded promising results, demonstrating high sensitivity and specificity, and outperforming traditional diagnostic methods. Our model achieved an accuracy of 97.72%, precision of 90.91%, sensitivity of 94.01%, and specificity of 98.2%. The incorporation of temporal dynamics through TSA provided a nuanced understanding of the evolving pathology, contributing to the enhanced accuracy of the diagnostic model. In conclusion, this study introduces a novel methodology for early thyroid cancer detection, combining the strengths of TSA and QDA. The results highlight the effectiveness of this integrated approach in improving diagnostic accuracy, particularly in identifying subtle temporal changes indicative of thyroid cancer. The proposed TSA-QDA model shows superior performance in terms of sensitivity, specificity, and classification accuracy for multi-class TIRADS classification.Refference:
I. Baek, J. H.:’Thyroid Cancer Screening: How to Maximize Its Benefits and Minimize Its Harms’. Endocrinology and Metabolism, vol.38(1),pp: 75-77,2023. 10.3803/EnM.2023.105
II. Cheong, B., Teh, H. J. H., Ng, G. S. N., & Huang, K. H. K.:’Thyroid cancer presenting as neck pain at a chiropractic clinic’. Cureus. Vol.15(5),2023. 10.7759/cureus.39276
III. Chen, D. W., Lang, B. H., McLeod, D. S., Newbold, K., & Haymart, M. R.: ‘Thyroid cancer’. The Lancet. vol.401(10387), pp:1531-1544,2023. 10.1016/S0140-6736(23)00020-X
IV. Elisei, R., Grande, E., Kreissl, M. C., Leboulleux, S., Puri, T., Fasnacht, N., & Capdevila, J.: ’Current perspectives on the management of patients with advanced RET-driven thyroid cancer in Europe’. Frontiers in Oncology. Vol.13,2023. 10.3389/fonc.2023.1141314.
V. Gokilavani, M., Sriram, Vijayaragavan, S. P., & Nirmalrani, V: ’Chicken Swarm-Based Feature Selection with Optimal Deep Belief Network for Thyroid Cancer Detection and Classification’. In Computational Intelligence for Clinical Diagnosis.pp: 21-35,2023. 10.1007/978-3-031-23683-9_2
VI. Grant, E. G., & Kwon, D. I.:’Is There a Place for Lymphatic Contrast-enhanced US in Thyroid Cancer?’. Radiology. Vol.307(4),2023. 10.1148/radiol.230560.
VII. Habchi, Y., Himeur, Y., Kheddar, H., Boukabou, A., Atalla, S., Chouchane, A.,& Mansoor, W: ‘Ai in thyroid cancer diagnosis: Techniques, trends, and future directions’. Systems. vol.11(10), pp:519-530,2023. 10.3390/systems11100519
VIII. Huang, J., Xu, S. H., Li, Y. Z., Wang, Y., Li, S. T., Su, H. S., & He, Y. J:’ A study on the detection of thyroid cancer in Hashimoto’s thyroiditis using computed tomography imaging radiomics’. Journal of Radiation Research and Applied Sciences. Vol.16(4),2023. 10.1016/j.jrras.2023.100677
IX. Lee, E., Jeong, S. H., Nam, C. M., Jun, J. K., & Park, E. C.:’ Role of breast cancer screening in the overdiagnosis of thyroid cancer: results from a cross-sectional nationwide survey’. BMC Women’s Health.vol. 23(1), pp:64-75,2023. 10.1186/s12905-023-02205-6
X. Luff, M. K., Kim, J., Tseng, C. H., Livhits, M. J., Yeh, M. W., & Wu, J. X. :’Racial/ethnic disparities in thyroid cancer in California, 1999–2017’. The American Journal of Surgery, vol.225(2),pp: 298-303,2023. 10.1016/j.amjsurg.2022.09.041
XI. Moon, S., Lee, E. K., Choi, H., Park, S. K., & Park, Y. J:’Survival comparison of incidentally found versus clinically detected thyroid cancers: an analysis of a nationwide cohort study’. Endocrinology and Metabolism.vol. 38(1), pp:81-92,2023. 10.3803/EnM.2023.1668
XII. Ma, Y., Zhang, Q., Zhang, K., Ren, F., Zhang, J., Kan, C., & Sun, X.: ‘NTRK fusions in thyroid cancer: pathology and clinical aspects’. Critical Reviews in Oncology/Hematology.vol.103957,2023. 10.1016/j.critrevonc.2023.103957.
XIII. Mu, X., Huang, X., Jiang, Z., Li, M., Jia, L., Lv, Z.,& Mao, J.:’ [18F] FAPI-42 PET/CT in differentiated thyroid cancer: diagnostic performance, uptake values, and comparison with 2-[18F] FDG PET/CT’. European Journal of Nuclear Medicine and Molecular Imaging. vol.50(4),pp: 1205-1215,2023. 10.1007/s00259-022-06067-2.
XIV. Pathak, R. K., Mishra, S., & Sharan, P.:’ Bragg reflector one-dimensional multi-layer structure sensor for the detection of thyroid cancer cells’. TELKOMNIKA (Telecommunication Computing Electronics and Control). vol.21(3), 622-629,2023. 10.12928/telkomnika.v21i3.24282
XV. S. Prabu, B. Thiyaneswaran, M. Sujatha, C. Nalini and S. Rajkumar:’Grid search for predicting coronary heart disease by tuning hyper-parameters. Computer Systems Science and Engineering. vol. 43(2), pp: 737–749, 2022. 10.32604/csse.2022.022739
XVI. Tran, M. H., Gomez, O., & Fei, B.:’A video transformer network for thyroid cancer detection on hyperspectral histologic images’. In Medical Imaging 2023: Digital and Computational Pathology .Vol. 12471, pp: 32-41,2023. 10.1117/12.2654851
XVII. Xiao, J., Meng, S., Zhang, M., Li, Y., Yan, L., Li, X., & Luo, Y.:’Optimal method for detecting cervical lymph node metastasis from papillary thyroid cancer’. Endocrine.vol.79(2), pp:342-348,2023. 10.1007/s12020-022-03213-6
XVIII. Xiao, J., Jiang, J., Chen, W., Hong, T., Li, B., He, X., & Liu, W.: ‘Combination of ultrasound and serological tests for detecting occult lateral lymph node metastases in medullary thyroid cancer’. Cancer Medicine.vol.12(10),pp: 11417-11426,2023. 10.1002/cam4.5856.
XIX. Zhang, Y., Lu, Y. Y., Li, W., Zhao, J. H., Zhang, Y., He, H. Y.,& Luo, Y. K.:’Lymphatic contrast-enhanced US to improve the diagnosis of cervical lymph node metastasis from thyroid cancer’. Radiology.vol.307(4),pp: e221265,2023. 10.1148/radiol.221265