Authors:
Ali A. Dawood,Tahreer S. Mansour,Yousif I. Hammadi,DOI NO:
http://doi.org/10.26782/jmcms.2019.10.00013Keywords:
Hollow-Core Photonic Crystal Fiber,FWHM,Pulse compression,the compression factor,Abstract
Hollow-core photonic crystal fibers (HC-PCF) are used for high power beam delivery and can deliver ultra-short or compressed pulses at 1550 nm. This paper study the relation between the length of (9 &7) cell HC-PCFsand the full width at half maximum (FWHM) using laser source with centroidwavelength of 1546.7 nm, i.e. almost 1550nm, and FWHM of 286 pm or 10 ns in the time domain.The FWHM in the frequency domain was increased in both (19&7) cell HC-PCFs as the length of Fabry-Perot interferometer increased till it reachesa specific length and then dramatically decreasedto go to the almost same starting point.Refference:
I. Agrawal, G.P. Application of Nonlinear Fiber Optics, 2nded.; Academic
Press: New York, 2001.
II. D. G. Ouzounov, F. R. Ahmad, D. M¨uller, N. Venkataraman, M. T.
Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta,
“Generation of megawatt optical solitons in hollow-Core photonic band-gap
fibers,” Science 301, 1702–1704 (2003).
III. D. V. Skryabin, “Coupled core-surface solitons in photonics crystal fibers,”
Opt. Express 12, 4841–4846 (2004).
IV. Diels, J.C.; Rudolph, W. Ultrashort Laser Pulse Phenomena,2nd ed.;
Academic Press: 2006.
V. E. V. Ermolaeva and V. G. Bespalov, “Optimum Condi- tions for Stimulated
Raman Scattering, Compression, and Amplification of Supershort Pulses in a
Plasma with Com- pressed Gases,” Journal of Optical Technology, Vol. 74,
No. 11, 2007, pp. 734-739.
VI. F. G´erˆome, K. Cook, A. K. George, W. Wadsworth, and J. C. Knight,
“Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton
compression,” Opt. Express 15, 7126–7131 (2007).
VII. F. Luan, J. C. Knight, P. S. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J.
Mangan, D. P. Williams, and P. J. Roberts, “Femtosecond soliton pulse
delivery at 800 nm wavelength in hollow-core photonic bandgap fibers,”
Opt. Express 12, 835–840 (2004).
VIII. G. H. He and S. H. Liu, “Physics of Nonlinear Optics,” World Scientific
Publishing Co. Pte Ltd., Singapore, 1999.
IX. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001)
X. H. Q. Quy, “Applied Nonlinear Optics,” Hanoi National University
Publishing, Hanoi, 2007, pp. 214-201.
XI. J. C. Knight, F. G´erˆome, and. J. Wadsworth, “Hollow-core photonic crystal
fibers for delivery and compression of ultrashort optical pulses,” IEEE J.
Quantum Electron. 39, 1047–1056 (2007).
XII. L. V. Tarasov, “Laser Physics,” Mir, Moscow, 1988, pp. 214-335.
XIII. S. O. Atuba, K. Nakkeeran, K. W. Chow, P. Ramesh Babu, A. Manimegalai
& K. Senthilnathan (2016) Generation of a train of ultrashort pulses using
periodic waves in tapered photonic crystal fibers, Journal of Modern Optics,
63:21, 2246-2258, DOI: 10.1080/09500340.2016.1193638
XIV. V. L. Kalashnikov, “Pulse Shortening in the Passive Q- Switched Lasers with
Intracavity Stimulated Raman Scat- tering,” Optics Communications, Vol.
218, No. 1-3, 2003, pp. 147-153. doi:10.1016/S0030-4018(03)01191-X [12]
I. P. Prokopovich and A. A. Khrushchinskii, “Highly Efficient Generation of
Attosecond Pulses in Coherent Stimulated Raman Self-Scattering of Intense
Demtosec-and Laser Pulses,” Laser Physics, Vol. 7, No. 2, 1997, pp. 305-
308.
XV. Weiner, A.M. Ultrafast Optics; John Wiley: Hoboken, NJ,2009.
XVI. Y. Ping, I. Geltner and S. Suckewer, “Raman Scattering,” Physical Review
E, Vol. 67, 2003, Article ID: 016401. doi:10.1103/PhysRevE.67.016401