Authors:
Bikash Chandra Bag,Hirak Kumar Maity,Chaitali Koley,DOI NO:
https://doi.org/10.26782/jmcms.2024.08.00003Keywords:
Deep Neural network,Deep Steganography,Multiple Secret Images,Single Cover Image,Tiny ImageNet dataset,Abstract
In this paper, the framework of Data Hiding on Digital Images Using Deep Neural Network (DNN). Here DeepSteg architecture is considered to evaluate the performance of the multiple secret images that can be concatenated to the single cover image, the image data will be hidden on the single cover image using the Tiny ImageNet dataset. The proposed model outperformed earlier results. To compare our results two parameters, normally Secret loss(λs) and cover loss(λc) are considered. Our plan is to use deep neural networks for the encoding and decoding of multiple secret images inside a single cover image of a similar goal.Refference:
I. Baluja, S. Hiding images in plain sight: Deep steganography. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (eds.), Advances in Neural Information Processing Systems 30, pp. 2069–2079. Curran Associates, Inc., 2017.
II. Bikash Chandra Bag, Hirak Kumar Maity , Chaitali Koley. : ‘UNET MOBILENETV2: MEDICAL IMAGE SEGMENTATION USING DEEP NEURAL NETWORK (DNN)’. J. Mech. Cont. & Math. Sci., Vol.-18(1), pp 21-29, 2023. 10.26782/jmcms.2023.01.00002
III. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09, 2009.
IV. Hayes, J. and Danezis, G. Generating steganographic images via adversarial training. In NIPS, 2017.
V. Ingham, F. Deepsteg: Implementation of hidding images in plain sight: Deep steganography in pytorch.
VI. Kreuk, F., Adi, Y., Raj, B., Singh, R., and Keshet, J. Hide and speak: Deep neural networks for speech steganography, 2019.
VII. Muzio, A. Deep-steg: Implementation of hidding images in plain sight: Deep steganography in keras.
VIII. Zhu, J., Kaplan, R., Johnson, J., and Fei-Fei, L. Hidden: Hiding data with deep networks. CoRR, abs/1807.09937, 2018.
View Download