CYCLONE STABILITY PARAMETER: ITS NUMERICAL VALUE AND SIGNIFICANCE IN THE PERSPECTIVE OF TRACK DETERMINATION

Authors:

Indrajit Ghosh,Sukhen Das,Nabajit Chakravarty,

DOI NO:

https://doi.org/10.26782/jmcms.2024.06.00008

Keywords:

Cyclone Stability Parameter (CSP),Cross Radial Velocity,Radio Sonde Radio Wind (RSRW),Track Determination,Transverse Velocity,Tropical Cyclone,

Abstract

The study of the dynamics of tropical cyclones constitutes a major portion of the curriculum for atmospheric science throughout the world. This is due to its enormous significance on the coastal human civilization all over the world. The increase in sea surface temperature globally has led to an increase in the frequency of tropical cyclones. As many as ten deadly tropical cyclones have hit the Coromandel Coast of the Bay of Bengal Coastline after generating depressions from the Bay of Bengal in the last decade. The most challenging part lies in the early detection of tropical depressions in the ocean bed, the consequent intensity prediction of the generated tropical cyclone, and the forecasting of the resulting path of propagation of the cyclone in landmass. For these a detailed analytic study of the related cyclone dynamics governing equations, their corresponding solution, propounding of the cyclone analytic solution model, and estimation of some critical parameters based on real cyclone data for the validation of the analytic model is of utmost importance. Radio Sonde Radio Wind (RSRW) data analysis for 5 cyclones and subsequent Cyclone Stability Parameter (CSP)determination, simplification of the complicated expression of  and its subsequent significance is the main work of this paper. The  is the representative of the entire analysis of the governing equations of tropical cyclones in the applicable coordinate system of a previously performed important work. So this work is also a validation of the previously performed analytic work. We have also analytically simplified the expression of  through some approximations and chalked out a more lucid expression which is a function of  only. This work effectively unites analytic and numerical performances for more effective prediction of tropical cyclone path of propagation in landmass after their formation in tropical oceans.

Refference:

I. Baisya H., Pattanaik S., Chakraborty T., : ‘A coupled modeling approach to understand ocean coupling and energetics of tropical cyclones in the Bay of Bengal basin’. J. Atmos. Res., Vol. 246, 105902, 2020 10.1016/j.atmosres.2020.105092
II. Emanuel K., : ‘Increasing destructiveness of tropical cyclones over the past 30 years’. Nature, Vol, 436, pp. 686-688, 2005 10.1038/nature03906
III. Elsberry R. L., Jordon M. S., Vitart F., : ‘Predictability of tropical cyclone events on inter seasonal time scales with the ECMWF monthly forecast model’. Asia. Pac. J. Atmos. Sci., Vol. 46, pp. 135-153, 2010 10.1007/s13143-010-0013-4
IV. Ghosh I., Chakravarty N., : ‘Tropical cyclones: expressions for velocity components and stability parameter’. J. Nat. Haz., Vol. 94, pp. 1293-1304, 2018. 10.1007/s11069-018-3477-7
V. Ghosh I., Das S., Chakravarty N., : ‘A review on tropical cyclones’. Journal of Mechanics of Continua and Mathematical Sciences, Vol. 16(12), pp. 20-48, 2021. 10.26782/jmcms.2021.12.00003
VI. Ghosh I., Das S., Chakravarty N.,: ‘RSRW Data, CSP and cyclone track prediction’. Journal of Mechanics of Continua and Mathematical Sciences, Vol. 17(2), pp. 41-51, 2022 10.26782/jmcms.2022.02.00005
VII. Ghosh I., Das S., Chakravarty N., : ‘Anomaly temperature in the genesis of tropical cyclone’. J. Nat. Haz., Vol. 114, pp. 1477-1503, 2022. 10.1007/s11069-022-05434-4
VIII. Jung B. J., Kim H. M., Kim Y. H., Jeon E., H., Kim K. H., : ‘Observation system experiments for typhoon Jangmi (200815); observed during T-Parc’. Asia. Pac. J. Atmos. Sci, Vol. 46, pp. 305-316, 2010. 10.1007/s1314: 010-1007-y
IX. Köhle M. P., Promper C., Glade T., : ‘A common methodology for risk assessment and mapping of climate change related hazards- implications for climate change adaptation policies’. MDPI Article Climate, Vol. 4(1), 8, 2016. 10.3390/cli4010008
X. Liu L., : ‘Tropical Cyclones, Oceanic Circulation and Climate, Climate Change and Variability, Suzanne Simard (Ed.), ISBN: 978-953-307-144-2, InTech, 2010
XI. http://www.intechopen.com/books/c change-and-variability/tropical-cyclones-oceanic-circulation-and- climate
XII. Lala S. et al., : ‘Mathematical explanation of earlier dissipation of the energy of tilted cyclone’. J. Climatol. Weather. Forecast., Vol. 2(2), pp. 1-6, 2014. 10.4172/2332-2594.1000115
XIII. Li L., Xuyang G., : ‘Intensity change of Noru during binary tropical cyclone interaction’. Asia. Pac. J. Atmos. Sci., Vol. 57, pp. 135-147, 2021. 10.1007/s13143-020-00181-7
XIV. Nott J. F., : ‘Intensity of prehistoric tropical cyclones’. J. Geophys. Res. Vo. 108(D7),4212, 2003. 10.1029/2002JD002726
XV. Nelson S. A., : ‘Tropical Cyclones (Hurricanes)’. 2014. http://tulane.edu/sanelson/New_Orleans__and_Hurricanes/tropical_ cyclones.htm
XVI. Posada R., Ortega G. E., Sanchez J. L., Lopez L., : ‘Verification of the MM5 model using radiosonde data from Madrid-Barajas Airport’. J. Atmos. Res., Vol. 122, pp. 174-182, 2012 10.1016/j.atmosres.2012.10.
XVII. Ritchie I., Vigh J. L., : ‘Tropical cyclone structure and intensity change: Inner core impacts – Rapporteur Report, Topic 1.2’. 7th International Workshop on Tropical Cyclones (IWTC-VII), France. 10.13140/2.1.1825.8247
XVIII. Rezapour M., : ‘A new methodology of classification of tropical cyclones: the importance of rainfall’. PhD Thesis, The University of Queensland, Australia. 2015.
XIX. Sikka D. R., : ‘Major advances in understanding and prediction of tropical cyclones over north Indian Ocean : A Perspective’. Mausam , Vol. 57(1), pp. 165-196, 2006.
XX. Shevtsov B. M., Ekaterina P., Holzworth R. H., : ‘Relation of tropical cyclone structure with thunder storm activity’. XXI International Symposium on Atmospheric and Ocean Optics, Tomsk, Russian Federation. 2015. 10.1117/12.2203348
XXI. Stern D. P., Vigh J. L., Nolan D., S., Zhang F., : ‘Revisiting the relationship between eyewall contraction and intensification’. J. Atmos. Sci., Vol. 72(4), pp. 1283-1306, 2015. 10.1175/JAS-D-14-0261.1
XXII. Sheasarani A., Khamiki A. K., Bidhokti A. A. A., Azadi M., : ‘Sensitivity analysis of the numerical aspect of the SWAN for the tropical cyclone wave simulations in the Gulf of Oman’. Arab. J. Geosci., Vol. 13, 692. 2020. 10.1007/s12517-020-05629-8
XXIII. Spiridonov V., Curic M., Sladic N., Jakimovski B., : ‘Novel thunderstorms alert system (NOTHAS)’. Asia. Pac. J. Atmos. Sci., Vol. 57, pp. 479-498, 2020. 10.1007/s13143-020-00210-5
XXIV. Tapiador F. J., : ‘Hurricane footprints in global climate models’. Entropy, Vol. 10, pp. 613-620, 2008. 10.3390/e10040613
XXV. Zehnder J. A., : ‘Tropical cyclone’. 2020. https://www.britannica.com/science/tropical-cyclone

View Download