CHARACTERISTICS OF INTEGRATION BETWEEN STATISTICAL MODELS AND MATHEMATICAL MODELS

Authors:

Rasha Ibrahim Hajaj,Iqbal M. Batiha,Mazin Aljazzazi,Iqbal H. Jebril,Roqia Ibraheem Butush,

DOI NO:

https://doi.org/10.26782/jmcms.2024.10.00012

Keywords:

Complex problem,Mathematical Modeling,Statistical Modeling Sustainability,Ultimately Indicated,

Abstract

This study focuses on integrating mathematical and statistical modeling, where a statistical model estimates the parameters of a mathematical model, or a mathematical model generates data to train a statistical model. This integration benefits both approaches: mathematical models improve the accuracy of statistical models, while statistical models help reduce bias in mathematical ones. The findings demonstrate that this combination is a valuable tool for understanding and predicting dynamic systems, offering more accurate and flexible models. Research consistently shows that integrating these models is an ideal approach for solving complex problems and understanding various systems.

Refference:

I. A. Dababneh, N. Djenina, A. Ouannas, G. Grassi, I. M. Batiha, I. H. Jebril. : ‘A new incommensurate fractional-order discrete COVID-19 model with vaccinated individuals compartment’. Fractal and Fractional. Vol. 6, p. 456, 2022. 10.3390/fractalfract6080456
II. C. D. Himmel, G. S. May. : ‘Advantages of plasma etch modeling using neural networks over statistical techniques’. IEEE Transactions on Semiconductor Manufacturing. Vol. 6, pp. 103-111, 1993. 10.1109/66.216928
III. D. R. Cavagnaro, J. L. Myung, M. A. Pitt, J. Myung. : ‘The Oxford Handbook of Quantitative Methods’. Oxford University Press, Oxford, 2013.
IV. H. E. Tinsley, S. D. Brown. : ‘Hand-book of Applied Multivariate Statistics and Mathematical Modeling’. Academic Press, Cambridge, 2000.
V. I. M. Batiha, A. A. Abubaker, I. H. Jebril, S. B. Al-Shaikh, K. Matarneh, M. Almuzini. : ‘A mathematical study on a fractional-order SEIR Mpox model: analysis and vaccination influence’. Algorithms. Vol. 16, p. 418, 2023. 10.3390/a16090418
VI. I. M. Batiha, A. A. Al-Nana, R. B. Albadarneh, A. Ouannas, A. Al-Khasawneh, S. Momani. : ‘Fractional-order coronavirus models with vaccination strategies impacted on Saudi Arabia’s infections’. AIMS Mathematics. Vol. 7, pp. 12842–12858, 2022. 10.3934/math.2022711
VII. I. M. Batiha, A. Obeidat, S. Alshorm, A. Alotaibi, H. Alsubaie, S. Momani, M. Albdareen, F. Zouidi, S. M. Eldin, H. Jahanshahi. : ‘A numerical confirma-tion of a fractional-order COVID-19 model’s efficiency’. Symmetry. Vol. 14, p. 2583, 2022. 10.3390/sym14122583
VIII. I. M. Batiha, J. Oudetallah, A. Ouannas, A. A. Al-Nana, I. H. Jebril. : ‘Tuning the fractional-order PID-Controller for blood glucose level of diabetic patients’. International Journal of Advances in Soft Computing and its Applications. Vol. 13, pp. 1–10, 2021. https://www.i-csrs.org/Volumes/ijasca/2021.2.1.pdf
IX. I. M. Batiha, N. Djenina, A. Ouannas, T. E. Oussaeif. : ‘Fractional-order SEIR Covid-19 model: discretization and stability analysis’. In: D. Zeidan, J. C. Cortes, A. Burqan, A. Qazza, J. Merker, G. Gharib.: ‘Mathematics and Computation’. Springer, Singapore, Vol. 418, 2023.
X. I. M. Batiha, S. A. Njadat, R. M. Batyha, A. Zraiqat, A. Dababneh, S. Momani. : ‘Design fractional-order PID controllers for single-joint robot arm model’. International Journal of Advances in Soft Computing and its Applications. Vol. 14, pp. 96-114, 2022. 10.15849/IJASCA.220720.07
XI. J. Arleback, T. Kawakami. : ‘Advancing and Consolidating Mathematical Modelling’. Springer, Berlin, 2023
XII. J. Cha. : ‘Numerical simulation of chemical propulsion systems: survey and fundamental mathematical modeling approach’. Aerospace. Vol. 10, p. 839, 2023. 10.3390/aerospace10100839
XIII. M. Almuzini, I. M. Batiha, S. Momani. : ‘A study of fractional-order monkeypox mathematical model with its stability analysis’. International Conference on Fractional Differentiation and its Applications, Ajman, UAE, 2023. 10.1109/ICFDA58234.2023.10153214.
XIV. M. H. Kutner, C. J. Nachtsheim, J. Neter, W. Li. : ‘Applied Linear Statistical Models’. McGraw Hill, New York, 2005.
XV. M. T. Shatnawi, A. A. Khennaoui, A. Ouannas, G. Grassi, A. V. Radogna, A. Bataihah, I. M. Batiha. : ‘A multistable discrete memristor and its application to discrete-time FitzHugh–Nagumo model’. Electronics. Vol. 12, p. 2929, 2023. 10.3390/electronics12132929
XVI. N. A. Gershenfeld. : ‘The Nature of Mathematical Modeling’. Cambridge University Press, Cambridge, 1999.
XVII. N. C. Atuegwu, L. R. Arlinghaus, X. Li, E. B. Welch, B. A. Chakravarthy, J. C. Gore, T. E. Yankeelov. : ‘Integration of diffusion-weighted MRI data and a simple mathematical model to predict breast tumor cellularity during neoadjuvant chemotherapy’. Magnetic Resonance in Medicine. Vol. 66, pp. 1689-1696, 2011. 10.1002/mrm.23203
XVIII. N. Djenina, A. Ouannas, I. M. Batiha, G. Grassi, T. E. Oussaeif, S. Momani. : ‘A novel fractional-order discrete SIR model for predicting COVID-19 behavior’. Mathematics. Vol. 10, p. 2224, 2022. 10.3390/math10132224
XIX. O. Sharomi, A. Gumel. : ‘Curtailing smoking dynamics: a mathematical modelling approach’. Applied Mathematics and Computation. Vol. 195, pp. 475-499, 2008. 10.1016/j.amc.2007.05.012
XX. R. McPhee, M. Scott Poole. : ‘Mathematical modeling in communication research: an overview’. Annals of the International Communication Association. Vol. 5, pp. 159-191, 1981.
XXI. S. Belkhir, F. Thomas, B. Roche. : ‘Darwinian approaches for cancer treatment: benefits of mathematical modeling’. Cancers. Vol. 13, p. 4448, 2021. 10.3390/cancers13174448
XXII. S. Coles, J. Bawa, L. Trenner, P. Dorazio. : ‘An Introduction to Statistical Modeling of Extreme Values’. Springer, London, 2001.
XXIII. S. Coles, S. Coles. : ‘An introduction to statistical modeling of extreme values’. Basics of Statistical Modelling. Vol. 13, pp. 18-44, 2001.
XXIV. T. Hamadneh, A. Hioual, O. Alsayyed, Y. A. Al-Khassawneh, A. Al-Husban, A. Ouannas. : ‘The FitzHugh–Nagumo model described by fractional difference equations: stability and numerical simulation’. Axioms. Vol. 12, pp. 806, 2023. 10.3390/axioms12090806
XXV. T. H. Shahraiyni, S. Sodoudi. : ‘Statistical modeling approaches for PM10 prediction in urban areas; a review of 21st-century studies’. Atmosphere. Vol. 7, p. 15, 2016. 10.3390/atmos7020015
XXVI. T. Roos, P. Myllymaki, H. Tirri. : ‘A statistical modeling approach to location estimation’. IEEE Transactions on Mobile Computing. Vol. 1, pp. 59-69, 2002. 10.1109/TMC.2002.1011059
XXVII. V. Cristini, J. Lowengrub. : ‘Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach’. Cambridge University Press, Cambridge, 2010.

View Download