Authors:
S. Farooq, V.B.Sreedhar,R. Padmasuvarna, Y. Munikrishna Reddy,DOI NO:
https://doi.org/10.26782/jmcms.2020.07.00019Keywords:
Photoluminescence, Judd-Ofelt theory, PL spectra,Dy3+ -doped glasses,Abstract
A series of glasses by melt quenching method fabricated for spectroscopic investigations of Dy3+ ions doped Antimony (Sb)-Magnesium (Mg)-Strontium (Sr) Oxyfluoroborate (BSbMgFS) glasses. The structural and optical characterizations such as XRD, Raman, UV-visible-NIR absorption spectroscopy, photoluminescence (PL) (excitation and emission), were skilled to study the various properties of the glasses. Amorphous nature of present glass confirm from the broad peaks of XRD. The transitions from lowest energy state to excited state in RE3+ ions were identified using optical UV-visible-NIR absorption spectra. By using Judd-Ofelt theory the J-O intensity parameters Ωλ (λ = 2, 4, 6) have been evaluated from experimental (fexp) and calculated (fcal) oscillator strengths. The value of Ω2 is higher than Ω4 and Ω6 and follows the trend Ω2˃ Ω6˃ Ω4. This confirms the high covalency of Dy3+ ion with ligands and more asymmetric environment around the rare earth ion in host. The emission of light from glass system was concluded through PL spectra (Excitation and emission) for Dy3+ion. In the present work branching ratio of 4F9/2→6H13/2transition is obtained higher than 50% (0.55). The highest readings of AR, βR and σse are obtained for the transition n 4F9/2→6H13/2 (yellow).Hence, this can be consider as an appropriate mechanism for lasing action. Gain band width (Δλeff x σse)and optical-gain (σse x τR) were found to be high for BSbMgFSDy01 and this suggest that BSbMgFSD01 glasses were appropriate for optical amplifier. In the present study of Dy3+ -doped glasses, BSbMgFSD05 has shown highest emission with a Y/B ratio of 2.73 which is useful for white-LED applications. BSbMgFSDy05 glass is suitable for white light emitting devices and lasers applications in the visible region at 575 nm upon excitation of 425 nm.Refference:
I. A. Lira, A. Speghini, E. Camarillo, M. Bettinelli, U. Caldino, Spectroscopic evaluation of Zn (Po3): Dy3+ glass as active medium of solid state laser, Opt. Mater. 38 (2014) 188.
II. A.S. Rao, Y.N. Ahammed, R.R. Reddy, T.V.R. Rao, Spectroscopic studies of Nd3+-doped alkali fluoroborophosphate glasses, Opt. Mater. 10 (1998) 245–252.
III. A. Thulasiramudu, S. Buddhudu, Optical characterization of Sm3+ and Dy3+ doped ZnO-PbO-B2O3 glasses, Spectrochim Acta Part A. 67 (2007) 802-807.
IV. B. R. Judd, Optical absorption intensities of rare earth ions, Phys. Rev. 127 (1962) 750.
V. C. Gorller-Walrand, K. Binnemans, Handbook on the Physics and Chemistry of Rare Earths, Spectral Intensities of f-f Transitions, vol. 5, Elsevier/North-Holand, Amsterdam, 1998, 101-264.
VI. C.K. Jorgenson, B.R. Judd, Hypersensitive pseudoquadrapole transition in Lanthanides, Mol. Phys. 8 (1964) 281–290.
VII. C. Nageswara Raju, S.Sailaja, S. Hemasundara Raju, S.J.Dhoble, U.Rambabu, Young-Dahl Jho, B.Sudhakar Reddy, Emission analysis of CdO–Bi2O3–B2O3 glasses doped with Eu3+ and Tb3+,Ceramic.International 40(2014) 7701–7709.
VIII. D.K. Sardar, W.M. Bradly, R.M. Yow, J.B. Gruber, B. Zandi, J. of Luminescence 106 (2004) 195-203.
IX. D. Rajesh, Y.C. Ratnakaram, M. Seshadri, A. Balakrishna, T. Satya Krishna, Structural and luminescence properties of Dy3+ ion in strontium lithium bismuth borate glasses J. Lumin. 132 (2012) 841-849.
X. G. Chinna Ram, T. Narendrudu, S. Suresh, A. Suneel Kumar, M.V. Sambasiva Rao, V. Ravi Kumar, D. Krishna Rao, Investigation of luminescence and laser transition of Dy3+ion in P2O5-PbO-Bi2O3 -Dy2O3 glasses, Optical Materials 66 (2017) 189-196.
XI. G. S. Ofelt, Intensities of crystal spectra of rare earth ions, J. Chem. Phys. 37 (1962) 511.
XII. G. Venkata Rao, C.K. Jayasankar., “Dy3+-doped tellurite based tungsten zirconium glasses: Spectroscopy study”, J. Mol. Struct. 1084 (2015) 182-189.
XIII. H.A. Othman, G.M. Arzumanyan, D. Moncke, The effect of alkaline earth oxides and cerium concentration on the spectroscopic properties of Sm/Ce doped lithium alumino-phosphate glasses Opt. Mater. 62 (2016) 689–696.
XIV. J. Juarez-Batalla, A.N. Meza-Rocha, G.Munoz, H.I.Camarillo, U.Caldino, Luminescence properties of Tb3+-doped zinc phosphate glasses for green laser application, Opt Mater. 58(2016) 406–411.
XV. Kenyon A.J, “Recent developments in rare-earth doped materials for optoelectronics, Prog. J. Quantum Electron, 26(2002) 225–284.
XVI. K. Jaroszewski, P. Głuchowski, M. Chrunik, R. Jastrz, A. Majchrowski, D. Kasprowicz, Near-infrared luminescence of Bi2ZnOB2O6:Nd3+/PMMA composite, Optical Materials 75 (2018) 13-18.
XVII. K.S.V. Sudhakar, M. Srinivasa Reddy, L. Srinivasa Rao, N. Veeraiah, Influence of modifier oxide on spectroscopic and thermoluminescence characteristics of Sm3+ ion in antimony borate glass system, J. of Luminescence 128 (2008) 1791– 1798.
XVIII. K. Swapna, Sk. Mahamuda, A. Srinivasa Rao, M. Jayasimhadri, T. Sasikala, L. Rama Moorthy, Optical absorption and luminescence characteristics of Dy3+ doped Zinc Alumino Bismuth Borate glasses for lasing materials and white LEDs, Journal of Luminescence 139 (2013) 119 -124.
XIX. K. Vijaya Babu, Sandhya Cole, Luminescence properties of Dy3+-doped alkali lead alumino borosilicate glasses, Ceramics International(2018) 9080-9090.
XX. K.V. Krishnaiah, K. Upendra Kumar, C.K. Jayasankar, Mater. Exp. 3 (2013) 61-70.
XXI. L. Eyring (Ed.), Progress in the Science and Technology of the Rare Earths, Pergamon, London (1966).
XXII. M.J. Plodinec, Borosilicate glass for nuclear waste immobilisation, Glass Technol. 41(2000), 186-192.
XXIII. M. Kemere, J. Sperga, U. Rogulis, G. Krieke, J. Grube, Structural and optical studies on Sm3+ ions doped bismuth fluoroborate glasses for visible laser applications, J. Lumin. 181 (2017) 25–30.
XXIV. M. Sundara Rao, V. Sudarsan, M.G. Brik, Y. Gandhi, K. Bhargavi, M. Piasecki, I.V. Kityk, N. Veeraiah, De-quenching influence of aluminum ions on Y/B ratio of Dy3+ ions in lead silicate glass matrix, Journal of Alloys and Compounds 575 (2013) 375-381.
XXV. M.V. Vijaya Kumar, B.C. Jamalaiah, K. Rama Gopal, R.R. Reddy., “Optical absorption and fluorescence studies of Dy3+-doped lead telluroborate glasses”, J. Lumin. 132 (2012) 86-90.
XXVI. Nisha Deopa, A.S. Rao, Photoluminescence and energy transfer studies of Dy3+ ions doped lithium lead alumino borate glasses for w-LED and laser applications, J. of Luminescence 192 (2017) 832–841.
XXVII. N. Kiran, A. Suresh Kumar., “White light emission from Dy3+ doped sodium lead borophosphate glasses under UV light excitation”, J. Mol. Struct. 1054 (2013) 6-11.
XXVIII. P. Suthanthirakumar, K. Marimuthu, Investigations on spectroscopic properties of Dy3+ doped zinc telluro-fluoroborate glasses for laser and white LED application,J. Mol. Struct. 1125 (2011) 443-452.
XXIX. R.C. Lucacel, I. Ardelean, FT-IR and Raman study of silver lead borate-based glasses, J. Non-Cryst. Solids. 353 (2007) 2020-2024.
XXX. S. Abed, H. Boughrraf, K. Bouchouit, Z. Sofiani, B. Derkowska, M.S. Aida, B. Sahraoui, Influence of Bi doping on the electrical and optical properties of ZnO thin films, Superlattice Microstruct. 85 (2015) 370-378.
XXXI. S.D. Jackson, Continuous wave 2.9µm dysprosium-doped fluoride fiber laser, Appl. Phys. Lett. 83 (2003) 1316-1318.
XXXII. S. Gai, C. Li, P. Yang, J. Lin, Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications, Chem. Rev. 114 (2014) 2343-2389.
XXXIII. Sk. Mahamuda, K. Swapna, P. Packiyaraj, A. Srinivasa Rao, G. Vijaya Prakash, Lasing potentialities and white light generation capabilities of Dy3+ doped oxyfluoro borate glasses, J.Lumin. 153 (2014) 382−392.
XXXIV. Sudhakar Reddy: Judd–Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO–Bi2O3– B2O glasses for laser applications, J Mater Sci. 47 (2012) 772–778.
XXXV. Swapna K, Mahamuda S, Rao AS, Jayasimhadri M, Moorthy LR. Visible fluorescence Characteristics of Dy3+ doped zinc alumino bismuth borate glasses for optoelectronic devices, Ceramic Int 39 (2013) 8459–65.
XXXVI. T. Srihari, C.K. Jayasankar, Fluorescence properties and white light generation from Dy3+-doped niobium phosphate glasses, Optical Materials 69 (2017) 87-95.
XXXVII. Valluri Ravi Kumar, G. Giridhar, N. Veeraiah, Influence of modifier oxide on emission features of Dy3+ ion in Pb3O4 ‒ZnO‒P2O5 glasses, Optical Materials, 60 (2016) 594-600.
XXXVIII. W. Bi, N. Louvain, N. Mercier, J. Luc, I. Rau, B. Sahraoui, A switchable NLO organic- inorganic compound based on conformationally chiral disulfide molecules and Bi(III)I5 iodobismuthate networks, Adv. Mater. 20 (2008) 1013-1017.
XXXIX. W.T. Carnall, P.R. Fields, K.Rajnak, Electronic Energy Levels in the Trivalent Lanthanide AquoIons. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+, J. Chem. Phys. 49 (1968) 4424–4442.
View Download