CERTAIN FEATURES OF PARTIALLY α – COMPACT FUZZY

Authors:

M. A. M. Talukder ,D. M. Ali ,

DOI NO:

https://doi.org/10.26782/jmcms.2014.07.00005

Keywords:

fuzzy sets,compact fuzzy sets,fuzzy topological spaces,

Abstract

In this paper , we introduce the concept of partially α– shading ( resp. partially *α– shading ), in ahort, αp– shading ( resp. *αp– shading ) and partially α– compact ( resp. partially *α– compact ), in short, αp– compact ( resp. *αp– compact ) fuzzy sets and study their several features in fuzzy topological spaces.

Refference:

I. D. M. Ali, On Certain Separation and Connectedness Concepts in Fuzzy Topology, Ph. D. Thesis, Banaras Hindu University; 1990.

II.K. K. Azad , On Fuzzy semi – continuity , Fuzzy almost continuity and Fuzzy weakly continuity , J. Math. Anal. Appl., 82(1) (1981), 14 – 32.

III. C. L. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl., 24(1968), 182 – 190.

IV. David. H. Foster, Fuzzy Topological Groups, J. Math. Anal. Appl., 67(1979), 549- 564.

V. T. E. Gantner, R. C. Steinlage and R. H. Warren, Compactness in Fuzzy Topological Spaces, J. Math. Anal. Appl., 62(1978), 547 – 562.

VI. M. Hanafy, Fuzzy β – Compactness and Fuzzy β – Closed Spaces, Turk J Math, 28(2004), 281 – 293.

VII. A. K. Katsaras, Ordered fuzzy topological spaces, J. Math. Anal. Appl., 84(1981), 44 – 58.

VIII. Lipschutz, Theory and problems of general topology, Schaum’s outline series, McGraw-Hill book publication company, Singapore; 1965.

IX. S. R. Malghan and S. S. Benchali, On Fuzzy Topological Spaces, Glasnik Mat., 16(36) (1981), 313 – 325.

X. Ming, Pu.Pao ; Ming, Liu Ying : Fuzzy topology I. Neighborhood Structure of a fuzzy point and Moore – Smith Convergence ; J. Math. Anal. Appl.,76(1980), 571- 599.

XI. R. Srivastava, S. N. Lal, and A K. Srivastava, Fuzzy 1T topological Spaces, J. Math. Anal. Appl., 102(1984), 442 – 448.

XII. P. Wuyts and R. Lowen, On separation axioms in fuzzy topological spaces, fuzzy neighbourhood spaces and fuzzy uniform spaces, J. Math. Anal. Appl., 93(1983), 27 – 41.

XIII. L. A. Zadeh, Fuzzy Sets, Information and Control, 8(1965), 338 – 353.

 

Author(s) : M. A. M. Talukder and D. M. Ali View Download