Authors:
D. Mary Florence,R. Murugesan,P. Namasivayam,DOI NO:
https://doi.org/10.26782/jmcms.2020.08.00009Keywords:
Semiprime Semiring,Inverse Semiring,Commutator,Centralizer,Left (right) Centralizer,Abstract
Let will represent a semiprime inverse semiring with -torsion free and has identity element, where . An additive mapping from in to itself satisfying fulfilled for all and be distinct integers,forces to be centralizer. Moreover one more result involving centralizer has also been discussed.Refference:
I. Bandlet H.J and Petrich M, Subdirect products of rings and distributive lattics, Proceedings of the Edinburgh Mathematical Society,25, 155 – 171 (1982).
II. Golan J.S.,Theory of semirings with applications in math., and theoretical comp., sci. Longman Scientific & Technical; New York: Wiley (1992).
III. Irena Kosi-Ulbl, A Remark on Centralizers in Semiprime Rings, Glasnik Matematicki, Vol. 39(59), 21 – 26 (2004).
IV. Javed M.A, Aslam M and Hussain M., On Condition (A2) of Bandlet and Petrich for inverse semirings, International Mathematical Forum, Vol. 7, 2903 – 2914 (2012).
V. Karvellas P.H., Inversive semirings, J. Aust. Math. Soc., 18, 277 – 288 (1974).
VI. Kosi-Ulbl I and Vukmanon J., Centralizers of Standard Operator Algebras and Semisimple H* -Algebras, Acta Math. Hungar, 110 (3), 217–223 (2006).
VII. Sara S, Aslam M and Javed M.A, On centralizer of semiprime inverse semiring, Discussiones Mathematicae, General Algebra and Applications, 36, 71 – 84 (2016).
VIII. Sen M.K and Maity S.K.,Regular additively inverse semirings, Acta Math. Univ. Comenianae. 1, 137-146 (2006).
IX. Vukman J., An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolin. 40, 3, 447–456 (1999).
X. Zalar B., on centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32, 609 – 614 (1991).