AN ADAPTED ANALYTICAL SOLUTION TO THE MULHOLLAND EQUATION: MODIFIED DIRECT ITERATION PROCEDURE

Authors:

Sabrina Sultana,B M Ikramul Haque,M. M. Ayub Hossain,

DOI NO:

https://doi.org/10.26782/jmcms.2025.02.00010

Keywords:

Mulholland Equation,Direct iteration procedure,Analytical solution,Modified Direct iteration procedure,Mathematica,

Abstract

The Mulholland equation is a third-order ordinary differential equation characterized by its nonlinearity. It particularly represents a central restoring force. Mulholland equations have many real applications in various fields, such as modern control theory, phase plane analysis, stability analysis, bifurcation analysis, etc. This paper employed the modified direct iteration method to solve the Mulholland equation, analytically incorporating all its terms (sometimes in approximated forms) during each iterative step. The analytical solutions are compared with existing results. The analytical solutions also showed remarkable precision when compared with numerical outcomes. It also becomes clear that compared to other approaches already in use, the modified direct iteration method is substantially easier to use, more accurate, efficient, and uncomplicated. Moreover, the fourth approximated frequency exhibited only a 0.022 percentage error. The suggested method can be widely applied to different engineering issues, while it is primarily demonstrated in nonlinear models with strong nonlinear factors.

Refference:

I. Alquran M., T., Doğan, N.: ‘Variational Iteration method for solving two-parameter singularly perturbed two-point boundary value problem. Applications and Applied Mathematics’. Applications and Applied Mathematics: An International Journal (AAM). Vol. 5(1), pp: 81-95, 2010. https://digitalcommons.pvamu.edu/aam/vol5/iss1/7
II. Beléndez, A., Méndez, D., I., Fernández, E., Marini, S., Pascual, I.: ‘An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method’. Physics Letters A. Vol. 373(32), pp: 2805-9, 2009. 10.1016/j.physleta.2009.05.074
III. Guo, Z, Leung, A., Y, and Yang, H., X.: ‘Iterative homotopy harmonic balancing approach for conservative oscillator with strong odd-nonlinearity’. Applied Mathematical Modelling. Vol. 35(4), pp: 1717-28, 2011. doi:10.1016/j.apm.2010.10.004
IV. Haque, B., M., I, Hossain, M., M., A.: ‘A modified solution of the nonlinear singular oscillator by extended iteration procedure’. Journal of Advances in Mathematics and Computer Science. Vol. 34(3), pp: 1-9, 2019. 10.9734/jamcs/2019/v34i3-430204

V. Haque, B., M., I., and Hossain, M., I.: ‘An analytical approach for solving the nonlinear jerk oscillator containing velocity times acceleration-squared by an extended iteration method’. journal of Mechanics of Continua and Mathematical Sciences. Vol. 16(2), pp: 35-47, 2021. 10.26782/jmcms.2021.02.00004
VI. Haque, B., M., I., and Hossain, M., M., A.: ‘An Effective Solution of the Cube-Root Truly Nonlinear Oscillator: Extended Iteration Procedure’. International Journal of Differential Equations. Vol. 2021, pp: 1-11, 2021. 10.1155/2021/7819209
VII. He, J.-H.: ‘Homotopy perturbation technique’. Computer methods in applied mechanics and engineering. Vol. 178(3-4), pp: 257–262, 1999. 10.1016/S0045-7825(99)00018-3
VIII. Hossain, M., M., A., and Haque, B., M., I.: ‘A solitary convergent periodic solution of the Inverse Truly Nonlinear Oscillator by modified Mickens extended iteration procedure’. Journal of Mechanics of Continua and Mathematical Sciences. Vol. 16(8), pp: 1-9, 2021. 10.26782/jmcms.2021.08.00001
IX. Hossain, M., M., A., and Haque, B., M., I.: ‘Fixation of the relation between frequency and amplitude for nonlinear oscillator having fractional terms applying modified Mickens’ extended iteration method’. Journal of Mechanics of Continua and Mathematical Sciences, Vol. 17(1), pp: 88-103, 2022. 10.26782/jmcms.2022.01.00007
X. Hossain, M., M., A., and Haque, B., M., I.: ‘An Analytic Solution for the Helmholtz-Duffing Oscillator by Modified Mickens’ Extended Iteration Procedure’. Springer Proceedings in Mathematics & Statistics. pp: 689-700, 2022. 10.1007/978-981-19-9307-7_53
XI. Hossain, M., M., A., & Haque, B., M., I.: ‘An improved Mickens’ solution for nonlinear vibrations’. Alexandria Engineering Journal. Vol. 95, pp: 352-362, 2024. https://doi.org/10.1016/j.aej.2024.03.077
XII. Hu, H.: ‘Solutions of the Duffing-harmonic oscillator by an iteration procedure’. Journal of Sound and Vibration. Vol. 298(1-2), pp: 446-52, 2006. 10.1016/j.jsv.2006.05.023
XIII. Ismail, G., M., Abu-Zinadah, H.: ‘Analytic approximations to non-linear third-order jerk equations via modified global error minimization method’. Journal of King Saud University-Scienc. Vol. 33(1), pp: 101219, 2021. 10.1016/j.jksus.2020.10.016
XIV. Kevorkian, J., K., and Cole, J., D.: ‘Multiple scale and singular perturbation methods’. Springer Science & Business Media. Vol. 114, 2012. 10.1007/978-1-4612-3968-0
XV. Lakrad, F., Belhaq, M.: ‘Periodic solutions of strongly non-linear oscillators by the multiple scales method’. Journal of Sound and Vibration, Vol. 258(4), pp: 677-700, 2002. 10.1006/jsvi.2002.5145
XVI. Lim, C., W., and Wu, B., S.: ‘A modified Mickens procedure for certain nonlinear oscillators’. Journal of Sound and Vibration, Vol. 257(1), pp: 202-206, 2002. 10.1006/jsvi.2001.423
XVII. Mickens, R., E.: ‘Truly nonlinear oscillations: harmonic balance, parameter expansions, iteration, and averaging methods’. World Scientific, 2010. 10.1016/j.jsv.2010.06.019
XVIII. Mickens, R., E.: ‘Iteration procedure for determining approximate solutions to non-linear oscillator equations’. Journal of Sound Vibration. Vol. 116(1), pp: 185-7, 1987. 10.1016/S0022-460X(87)81330-5
XIX. Mulholland, R., J.: ‘Non-linear oscillations of a third-order differential equation’. International Journal of Non-Linear Mechanics. Vol. 6(3), pp: 279-94, 1971. 10.12691/ajams-3-6-4
XX. Nayfeh, A., H.: ‘Introduction to perturbation techniques’. John Wiley & Sons. 2011.
XXI. Nayfeh, A. H, and Mook, D., T.: ‘Nonlinear oscillations’. John Wiley & Sons, 2008.
XXII. Rahman, M., S., Hosen, M., A., Alam, M., S.: ‘Harmonic Balance Solution of Mulholland Equation’. In Proceedings of the International Multi-Conference of Engineers and Computer Scientists. 2011.
XXIII. Ramos. J., I.: ‘Analytical and approximate solutions to autonomous, nonlinear, third-order ordinary differential equations’. Nonlinear Analysis: Real World Applications. Vol. 11(3), pp: 1613-26, 2010. 10.1016/j.nonrwa.2009.03.023

View Download