Authors:
Ananjan Maiti,Chiranjib Dutta,Jyoti Sekhar Banerjee,Panagiotis Sarigiannidis,DOI NO:
https://doi.org/10.26782/jmcms.2024.02.00003Keywords:
infant cry interpretation,machine learning,artificial intelligence,infant monitoring,real-time systems,privacy concerns,XGBoost,Abstract
In order to improve the welfare of newborns, this study investigates the use of sound-recognition-based artificial intelligence (AI) approaches to the interpretation and monitoring of infant screams. Crying has long been a problem because it is the primary means of communication between infants and caregivers. The limitations of conventional interpretation techniques are discussed. These limitations include the subjective nature of interpretation and the inability to detect subtle variations in crying patterns. The goal of the research is to categorize crying patterns based on the cries of male and female infants and identify noises that are a sign of distress. The study utilized the Mel Frequency Cepstral Coefficients (MFCC) method to extract features from internet-sourced MP3 and WAV audio data. The technique successfully captured the unique qualities of each crying sound using various machine-learning models, including Random Forest and XGBoost. These models outperformed others with accuracy rates of 94.5% and 94.2%, respectively. These findings show how well these algorithms perform in correctly categorizing various newborn cries. The findings of this study establish the platform for possible Internet of Things (IoT) and healthcare framework implementations targeted at supporting parents in caring for their newborns by offering an insightful understanding of the distinctive vocalizations connected with weeping.Refference:
I. A. Bashiri and R. Hosseinkhani, : ‘Infant crying classification by using genetic algorithm and artificial neural network.’ Acta Medica Iranica, 531-539 (2020).
II. A. Chittora and H. A. Patil, : ‘Data collection of infant cries for research and analysis.’ Journal of Voice, 31(2), 252-e15 (2017).
III. A. Rosales-Pérez, C. A. Reyes-García, J. A. Gonzalez, O. F. Reyes-Galaviz, H. J. Escalante, and S. Orlandi, : ‘Classifying infant cry patterns by the Genetic Selection of a Fuzzy Model.’ Biomedical Signal Processing and Control, 17, 38-46 (2015).
IV. A. McStay and G. Rosner, : ‘Emotional artificial intelligence in children’s toys and devices: Ethics, governance and practical remedies.’ Big Data & Society, 8(1), 2053951721994877 (2021).
V. A. Virani, L. Duffett-Leger, and N. Letourneau, : ‘Parenting apps review: in search of good quality apps.’ Mhealth, 5 (2019).
VI. A. Kachhi, S. Chaturvedi, H. A. Patil, and D. K. Singh, : ‘Data Augmentation for Infant Cry Classification.’ In 2022 13th International Symposium on Chinese Spoken Language Processing (ISCSLP), 433-437. IEEE (2022, December).
VII. A. Sharma, A. Thakur, M. Garg, and S. Sharma, : ‘Early intervention saved the life of mother and baby: Management of a parturient with snake bite with neurotoxicity.’ Indian Journal of Anaesthesia, 65(Suppl 3), S139 (2021).
VIII. A. K. Olsavsky, J. Stoddard, A. Erhart, R. Tribble, and P. Kim, : ‘Reported maternal childhood maltreatment experiences, amygdala activation and functional connectivity to infant cry.’ Social cognitive and affective neuroscience, 16(4), 418-427 (2021).
IX. A. Pothula, M. A. R. Mondol, S. Narasimhan, S. M. Islam, and D. Park, : ‘SEDRo: A Simulated Environment for Developmental Robotics.’ In 2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), 1-2. IEEE (2020, October).
X. A. Chakraborty, B. Singh, A. Sau, D. Sanyal, B. Sarkar, S. Basu, & J. S. Banerjee: Intelligent vehicle accident detection and smart rescue system. In Applications of Machine Intelligence in Engineering (pp. 565-576). CRC Press (2022).
XI. A. Chakraborty, J. S. Banerjee, R. Bhadra, A. Dutta, S. Ganguly, D. Das, S. Kundu, M. Mahmud, & G. Saha: A framework of intelligent mental health monitoring in smart cities and societies. IETE Journal of Research, 1-14 (2023).
XII. C. Pan, W. Zhao, S. Deng, W. Wei, Y. Zhang, and Y. Xu, : ‘The Methods of Realizing Baby Crying Recognition and Intelligent Monitoring Based on DNN-GMM-HMM.’ In 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 352-356. IEEE (2018, May).
XIII. C. Ji, T. B. Mudiyanselage, Y. Gao, and Y. Pan, : ‘A review of infant cry analysis and classification.’ EURASIP Journal on Audio, Speech, and Music Processing, 2021(1), 1–17 (2021).
XIV. C. Pan, J. S. Banerjee, D. De, P. Sarigiannidis, A. Chakraborty, and S. Bhattacharyya, : ‘ChatGPT: A OpenAI Platform for Society 5.0.’ In Doctoral Symposium on Human Centered Computing, 384-397. Singapore: Springer Nature Singapore (2023, February).
XV. D. M. Romeo, M. Ricci, M. Picilli, B. Foti, G. Cordaro, and E. Mercuri, : ‘Early neurological assessment and long-term neuromotor outcomes in late preterm infants: a critical review.’ Medicina, 56(9), 475 (2020).
XVI. F. S. Matikolaie, & C. Tadj: Machine learning-based cry diagnostic system for identifying septic newborns. Journal of Voice (2022).
XVII. F. Fahmi, W. Shalannanda, I. Zakia, and E. Sutanto, : ‘Design of an IoT-based smart incubator that listens to the baby.’ In IOP Conference Series: Materials Science and Engineering, Vol. 1003, No. 1, 012153. IOP Publishing (2020, December).
XVIII. F. S. Matikolaie, Y. Kheddache, and C. Tadj, : ‘Automated newborn cry diagnostic system using machine learning approach.’ Biomedical Signal Processing and Control, 73, 103434 (2022).
XIX. G. Esposito, J. Nakazawa, P. Venuti, and M. H. Bornstein, : ‘Componential deconstruction of infant distress vocalizations via tree-based models: A study of cry in autism spectrum disorder and typical development.’ Research in Developmental Disabilities, 34(9), 2717-2724 (2013).
XX. G. Zamzmi, R. Kasturi, D. Goldgof, R. Zhi, T. Ashmeade, and Y. Sun, : ‘A review of automated pain assessment in infants: features, classification tasks, and databases.’ IEEE reviews in biomedical engineering, 11, 77–96 (2017).
XXI. H. Kumari and M. Paliwal, : ‘Concept of Trisutra Ayurveda: A Review.’ International journal of research in ayurveda and pharmacy, 8, 13-16 (2017).
XXII. H. Xuan, Z. Zhang, S. Chen, J. Yang, and Y. Yan, : ‘Cross-modal attention network for temporal inconsistent audio-visual event localization.’ In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 279-286 (2020, April).
XXIII. H. I. Salehin, Q. R. A. Joy, F. T. Z. Aparna, A. T. Ridwan, and R. Khan, : ‘Development of an IoT based smart baby monitoring system with face recognition.’ In 2021 IEEE World AI IoT Congress (AIIoT), 0292-0296.
XXIV. https://www.soundsnap.com/
XXV. H. Norholt, : ‘Revisiting the roots of attachment: A review of the biological and psychological effects of maternal skin-to-skin contact and carrying of full-term infants.’ Infant Behavior and Development, 60, 101441 (2020).
XXVI. I. M. Lyså, : ‘Managing Risk and Balancing Minds Transforming the Next Generation through ‘Frustration Education’.’ In Childhood Cultures in Transformation 30 Years of the UN Convention on the Rights of the Child in Action towards Sustainability. Brill (2021).
XXVII. J. M. Leventhal, G. A. Edwards, and R. G. Barr, : ‘Abusive Head Trauma and Infant Crying—A Flawed Analysis.’ JAMA pediatrics, 175(11), 1181-1181 (2021).
XXVIII. J. S. Banerjee, A. Chakraborty, M. Mahmud, U. Kar, M. Lahby, G. Saha: Explainable Artificial Intelligence (XAI) Based Analysis of Stress Among Tech Workers Amidst COVID-19 Pandemic. In: Advanced AI and Internet of Health Things for Combating Pandemics. Springer (2023).
XXIX. J. K. Mandal, S. Misra, J. S. Banerjee, S. Nayak (eds.): Applications of machine intelligence in engineering. In: Proceedings of 2nd Global Conference on Artificial Intelligence and Applications (GCAIA, 2021), 8–10 September 2021, Jaipur, India. CRC Press (2022).
XXX. J. S. Banerjee, M. Mahmud, D. Brown: Heart rate variability-based mental stress detection: an explainable machine learning approach. SN Comput. Sci. 4(2), 176 (2023).
XXXI. J. S. Banerjee, S. Bhattacharyya, A. J. Obaid, & W. C. Yeh, (Eds.): Intelligent Cyber-Physical Systems Security for Industry 4.0: Applications, Challenges and Management. CRC Press, (2022).
XXXII. J. Chattopadhyay, S. Kundu, A. Chakraborty, & J. S. Banerjee: Facial expression recognition for human computer interaction. New Trends in Computational Vision and Bio-inspired Computing: Selected works presented at the ICCVBIC 2018, Coimbatore, India, 1181-1192, (2020).
XXXIII. K. Wermke and W. Mende, : ‘Musical elements in human infants’ cries: in the beginning is the melody.’ Musicae Scientiae, 13(2_suppl), 151-175 (2009).
XXXIV. K. Wakunuma, G. Ogoh, D. O. Eke, and S. Akintoye, : ‘Responsible AI, SDGs, and AI Governance in Africa.’ In 2022 IST-Africa Conference (IST-Africa), 1-13. IEEE (2022, May).
XXXV. K. G. Srinivasa, B. J. Sowmya, A. Shikhar, R. Utkarsha, and A. Singh, : ‘Data analytics assisted internet of things towards building intelligent healthcare monitoring systems: IoT for healthcare.’ Journal of Organizational and End User Computing (JOEUC), 30(4), 83–103 (2018).
XXXVI. K. Das, & J. S. Banerjee: Green IoT for intelligent cyber-physical systems in industry 4.0: A review of enabling technologies, and solutions. In Applications of machine intelligence in engineering, 463-478, CRC Press (2022).
XXXVII. K. Das, & J. S. Banerjee: Cognitive Radio-Enabled Internet of Things (CR-IoT): An Integrated Approach towards Smarter World. In Applications of Machine intelligence in Engineering (pp. 541-555). CRC Press (2022).
XXXVIII. L. Liu, W. Li, X. Wu, and B. X. Zhou, : ‘Infant cry language analysis and recognition: an experimental approach.’ IEEE/CAA Journal of Automatica Sinica, 6(3), 778–788 (2019).
XXXIX. L. Provenzi, J. Lindstedt, K. De Coen, L. Gasparini, D. Peruzzo, S. Grumi, and S. Ahlqvist-Björkroth, : ‘The paternal brain in action: a review of human fathers’ fMRI brain responses to child-related stimuli.’ Brain Sciences, 11(6), 816 (2021).
XL. M. K. Kim and D. J. Kim, : ‘Effects of oral stimulation intervention in newborn babies with Cri du Chat syndrome: Single-Subject Research Design.’ Occupational Therapy International, 2018.
XLI. M. Lahby, V. Pilloni, J. S. Banerjee, M. Mahmud (eds): Advanced AI and Internet of Health Things for Combating Pandemics. Springer (2023).
XLII. Q. Gao, L. Tong, L. Tang, W. Zhong, and H. Zhu, : ‘Parental knowledge on infant crying and abusive head trauma and relevant shaking behaviors in China.’ Child Abuse & Neglect, 115, 105025 (2021).
XLIII. R. Majumder, M. Dasgupta, A. Biswas, & J. S. Banerjee: IoT-Based Smart City for the Post COVID-19 World: A Child-Centric Implementation Emphasis on Social Distancing. In Applications of Machine intelligence in Engineering (pp. 599-612). CRC Press (2022).
XLIV. R. L. Babbitt, T. A. Hoch, D. A. Coe, M. F. Cataldo, K. J. Kelly, C. Stackhouse, and J. A. Perman, : ‘Behavioral assessment and treatment of pediatric feeding disorders.’ Journal of Developmental & Behavioral Pediatrics, 15(4), 278-291 (1994).
XLV. R. Gupta, M. H. Choudhury, M. Mahmud, & J. S. Banerjee: Patent Analysis on Artificial Intelligence in Food Industry: Worldwide Present Scenario. In Doctoral Symposium on Human Centered Computing (pp. 347-361). Singapore: Springer Nature Singapore (2023).
XLVI. S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, and E. E. Bolton, : ‘PubChem in 2021: new data content and improved web interfaces.’ Nucleic acids research, 49(D1), D1388-D1395 (2021).
XLVII. S. Lahmiri, C. Tadj, and C. Gargour, : ‘Nonlinear statistical analysis of normal and pathological infant cry signals in cepstrum domain by multifractal wavelet leaders.’ Entropy, 24(8), 1166 (2022).
XLVIII. S. P. Dewi, A. L. Prasasti, and B. Irawan, : ‘The study of baby crying analysis using MFCC and LFCC in different classification methods.’ In 2019 IEEE International Conference on Signals and Systems (ICSigSys), 18-23. IEEE (2019, July).
XLIX. S. P. Dewi, A. L. Prasasti, and B. Irawan, : ‘Analysis of LFCC feature extraction in baby crying classification using KNN.’ In 2019 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS), 86-91. IEEE (2019, November).
L. S. Biswas, L. K. Sharma, R. Ranjan, S. Saha, A. Chakraborty, & J. S. Banerjee: Smart farming and water saving-based intelligent irrigation system implementation using the internet of things. In Recent Trends in Computational Intelligence Enabled Research (pp. 339-354). Academic Press (2021).
LI. S. Bhattacharyya, J. S. Banerjee, S. Gorbachev, K. Muhammad, & M. Koeppen (eds.): Computer Intelligence Against Pandemics. De Gruyter (2023).
LII. S. Bhattacharyya, J. S. Banerjee, & D. De (eds.): Confluence of Artificial Intelligence and Robotic Process Automation. Springer (2023).
LIII. S. Bhattacharyya, J. S. Banerjee, M. Köppen (eds.): Human-Centric Smart Computing: Proceedings of ICHCSC 2022, vol. 316. Springer Nature (2022).
LIV. S. Bhattacharyya, J. S. Banerjee, M. Köppen (eds.): Human-Centric Smart Computing: Proceedings of ICHCSC 2023, Springer Nature, (2024) (Press)
LV. S. Bhattacharyya, J. S. Banerjee, D. De, M. Mahmud (eds): Intelligent Human Centered Computing. Human 2023. Springer Tracts in Human-Centered Computing. Springer, Singapore (2023).
LVI. S. Guhathakurata, S. Saha, S. Kundu, A. Chakraborty, J. S. Banerjee: South Asian countries are less fatal concerning COVID-19: a fact-finding procedure integrating machine learning & multiple criteria decision-making (MCDM) technique. J. Inst. Eng. (India): Series B, 1–15 (2021).
LVII. S. Guhathakurata, S. Kundu, A. Chakraborty, J. S. Banerjee: A novel approach to predict COVID-19 using support vector machine. In: Data Science for COVID-19, pp. 351–364. Academic Press (2021).
LVIII. S. Guhathakurata, S. Saha, S. Kundu, A. Chakraborty, J. S. Banerjee: A new approach to predict COVID-19 using artificial neural networks. In: Cyber-Physical Systems, pp. 139–160. Academic Press (2022).
LIX. T. Ozseven, : ‘Infant cry classification by using different deep neural network models and hand-crafted features.’ Biomedical Signal Processing and Control, 83, 104648 (2023).
LX. T. Khan, : ‘An intelligent baby monitor with automatic sleeping posture detection and notification.’ AI, 2(2), 290-306 (2021).
LXI. T. Hussain, K. Muhammad, S. Khan, A. Ullah, M. Y. Lee, and S. W. Baik, : ‘Intelligent baby behavior monitoring using embedded vision in IoT for smart healthcare centers.’ Journal of Artificial Intelligence and Systems, 1(1), 110-124 (2019).
LXII. X. Zhang, Y. Zou, and Y. Liu, : ‘AICDS: An infant crying detection system based on lightweight convolutional neural network.’ In Artificial Intelligence and Mobile Services–AIMS 2018, 7, 185-196. Springer International Publishing (2018).
LXIII. Y. C. Liang, I. Wijaya, M. T. Yang, J. R. Cuevas Juarez, and H. T. Chang, : ‘Deep learning for infant cry recognition.’ International Journal of Environmental Research and Public Health, 19(10), 6311 (2022).
LXIV. Z. Khalilzad, Y. Kheddache, and C. Tadj,: ‘An entropy-based architecture for detection of sepsis in newborn cry diagnostic systems.’ Entropy, 24(9), 1194 (2022).