Authors:
Devika Banothu,Pankaj Kumar,Rajasri Reddy,DOI NO:
https://doi.org/10.26782/jmcms.2024.11.00002Keywords:
Biomedical implant,Bibliographical analysis,3D-printing,literature review,RStudio,Abstract
The growth trend and increasing global population are leading to new healthcare challenges that require prompt and effective solutions to meet the clinical demands. Currently, three-dimensional (3D) printing is emerging as a rapidly advancing technology to produce metal implants and other biomedical applications. This method creates intricate designs with biomimetic characteristics in a shorter timeframe, enabling healthcare providers to meet the needs of their patients better. This study thoroughly analyzes the demand and manufacturing methods for biomedical implants, particularly metal bio-implants. It also delves into biomaterials used in additive manufacturing, accompanied by a comprehensive bibliometric study covering scientific production by country, highly cited nations, productive authors, collaboration networks, and source rankings. The paper further investigates top author contributions, affiliations, and trends, featuring various analytical tools, such as co-citation networks, keyword co-occurrence analysis, and reference publication year spectroscopy, culminating in presenting key findings through insightful field plots. The current study uses network analysis and scientometric methodologies to analyze data taken from the Scopus journal database, which includes articles from the period between 2014 and 2023, to accomplish this goal. Through this analysis, the article aims to offer valuable insights into the relevance and real-world implications of previous research on the additive manufacturing of metal bio-implants.Refference:
I. Al-Khoury, A., Hussein, S. A., Abdulwhab, M., Aljuboori, Z. M., Haddad, H., Ali, M. A., Abed, I. A., & Flayyih, H. H. (2022). Intellectual Capital History and Trends: A Bibliometric Analysis Using Scopus Database. Sustainability, 14(18), 11615. 10.3390/su141811615
II. Al-Shalawi, F. D., Mohamed Ariff, A. H., Jung, D.-W., Mohd Ariffin, M. K. A., Seng Kim, C. L., Brabazon, D., & Al-Osaimi, M. O. (2023). Biomaterials as Implants in the Orthopedic Field for Regenerative Medicine: Metal versus Synthetic Polymers. Polymers, 15(12), 2601. 10.3390/polym15122601
III. Bandyopadhyay, A., Traxel, K. D., & Bose, S. (2021). Nature-inspired materials and structures using 3D Printing. Materials Science and Engineering: R: Reports, 145, 100609. 10.1016/j.mser.2021.100609
IV. Castanha, R. G., Grácio, M. C. C., & Perianes-Rodríguez, A. (2024). Co-citation analysis between coupler authors of a scientific domain’s citation identity: a case study in scientometrics. Scientometrics, 129(3), 1545–1566. 10.1007/s11192-023-04927-8
V. Chang, Y., & Huang, M. (2012). A study of the evolution of interdisciplinarity in library and information science: Using three bibliometric methods. Journal of the American Society for Information Science and Technology, 63(1), 22–33. 10.1002/asi.21649
VI. Everton, S. K., Hirsch, M., Stravroulakis, P., Leach, R. K., & Clare, A. T. (2016). Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Materials & Design, 95, 431–445. 10.1016/j.matdes.2016.01.099
VII. Gutiérrez-Salcedo, M., Martínez, M. Á., Moral-Munoz, J. A., Herrera-Viedma, E., & Cobo, M. J. (2017). Some bibliometric procedures for analyzing and evaluating research fields. Applied Intelligence. 10.1007/s10489-017-1105-y
VIII. Kalantari, A., Kamsin, A., Kamaruddin, H. S., Ale Ebrahim, N., Gani, A., Ebrahimi, A., & Shamshirband, S. (2017). A bibliometric approach to tracking big data research trends. Journal of Big Data, 4(1), 30. 10.1186/s40537-017-0088-1
IX. Lewandowski, J. J., & Seifi, M. (2016). Metal Additive Manufacturing: A Review of Mechanical Properties. Annual Review of Materials Research, 46(1), 151–186. 10.1146/annurev-matsci-070115-032024
X. Li, C., Pisignano, D., Zhao, Y., & Xue, J. (2020). Advances in Medical Applications of Additive Manufacturing. Engineering, 6(11), 1222–1231. 10.1016/j.eng.2020.02.018
XI. Meho, L. I., & Yang, K. (2007). Impact of data sources on citation counts and rankings of LIS faculty: Web of science versus scopus and google scholar. Journal of the American Society for Information Science and Technology, 58(13), 2105–2125. 10.1002/asi.20677
XII. Mehrpouya, M., Dehghanghadikolaei, A., Fotovvati, B., Vosooghnia, A., Emamian, S. S., & Gisario, A. (2019). The Potential of Additive Manufacturing in the Smart Factory Industrial 4.0: A Review. Applied Sciences, 9(18), 3865. 10.3390/app9183865
XIII. Mejia, C., Wu, M., Zhang, Y., & Kajikawa, Y. (2021). Exploring Topics in Bibliometric Research Through Citation Networks and Semantic Analysis. Frontiers in Research Metrics and Analytics, 6. 10.3389/frma.2021.742311
XIV. ]Murr, L.E. (2020). Metallurgy principles applied to powder bed fusion 3D printing/additive manufacturing of personalized and optimized metal and alloy biomedical implants: an overview. Journal of Materials Research and Technology, 9(1), 1087–1103. 10.1016/j.jmrt.2019.12.015
XV. 15] Murr, Lawrence E., Gaytan, S. M., Ramirez, D. A., Martinez, E., Hernandez, J., Amato, K. N., Shindo, P. W., Medina, F. R., & Wicker, R. B. (2012). Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies. Journal of Materials Science & Technology, 28(1), 1–14. 10.1016/S1005-0302(12)60016-4
XVI. OSAREH, F. (1996). Bibliometrics, Citation Analysis and Co-Citation Analysis: A Review of Literature I. Libri, 46(3). 10.1515/libr.1996.46.3.149
XVII. Pandey, A., Awasthi, A., & Saxena, K. K. (2020). Metallic implants with properties and latest production techniques: a review. Advances in Materials and Processing Technologies, 6(2), 405–440. 10.1080/2374068X.2020.1731236
XVIII. Paul, S., Nath, A., & Roy, S. S. (2021). Additive manufacturing of multi-functional biomaterials for bioimplants: a review. IOP Conference Series: Materials Science and Engineering, 1136(1), 012016. 10.1088/1757-899X/1136/1/012016
XIX. Pranckutė, R. (2021). Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications, 9(1), 12. 10.3390/publications9010012
XX. Sakata, I., Sasaki, H., Akiyama, M., Sawatani, Y., Shibata, N., & Kajikawa, Y. (2013). Bibliometric analysis of service innovation research: Identifying knowledge domain and global network of knowledge. Technological Forecasting and Social Change, 80(6), 1085–1093. 10.1016/j.techfore.2012.03.009
XXI. Schmitt, P., Zorn, S., & Gericke, K. (2021). ADDITIVE MANUFACTURING RESEARCH LANDSCAPE: A LITERATURE REVIEW. Proceedings of the Design Society, 1, 333–344. 10.1017/pds.2021.34
XXII. Singh, V. K., Singh, P., Karmakar, M., Leta, J., & Mayr, P. (2021). The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics, 126(6), 5113–5142. 10.1007/s11192-021-03948-5
XXIII. Sridhar, T. M., Vinodhini, S. P., Kamachi Mudali, U., Venkatachalapathy, B., & Ravichandran, K. (2016). Load-bearing metallic implants: electrochemical characterisation of corrosion phenomena. Materials Technology, 31(12), 705–718. 10.1080/10667857.2016.1220752
XXIV. Tilton, M., Lewis, G. S., & Manogharan, G. P. (2018). Additive Manufacturing of Orthopedic Implants. In Orthopedic Biomaterials (pp. 21–55). Springer International Publishing. 10.1007/978-3-319-89542-0_2
XXV. van Raan, A. F. J. (2006). Statistical properties of bibliometric indicators: Research group indicator distributions and correlations. Journal of the American Society for Information Science and Technology, 57(3), 408–430. 10.1002/asi.20284
XXVI. Wang, J., Zhang, Y., Aghda, N. H., Pillai, A. R., Thakkar, R., Nokhodchi, A., & Maniruzzaman, M. (2021). Emerging 3D printing technologies for drug delivery devices: Current status and future perspective. Advanced Drug Delivery Reviews, 174, 294–316. 10.1016/j.addr.2021.04.019
XXVII. Weismayer, C., & Pezenka, I. (2017). Identifying emerging research fields: a longitudinal latent semantic keyword analysis. Scientometrics, 113(3), 1757–1785. 10.1007/s11192-017-2555-z
XXVIII. Yadav, L. K., Misra, J. P., Kumar, V., Saxena, K. K., & Buddhi, D. (2022). Additive manufacturing for metal-based bio-implant development: A bibliometric analysis. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 095440892211327. 10.1177/09544089221132737
XXIX. Zhou, Q., Su, X., Wu, J., Zhang, X., Su, R., Ma, L., Sun, Q., & He, R. (2023). Additive Manufacturing of Bioceramic Implants for Restoration Bone Engineering: Technologies, Advances, and Future Perspectives. ACS Biomaterials Science & Engineering, 9(3), 1164–1189. 10.1021/acsbiomaterials.2c01164
XXX. Zhu, W., & Guan, J. (2013). A bibliometric study of service innovation research: based on complex network analysis. Scientometrics, 94(3), 1195–1216. 10.1007/s11192-012-0888-1
XXXI. Zwawi, M. (2022). Recent advances in bio-medical implants; mechanical properties, surface modifications and applications. Engineering Research Express, 4(3), 032003. 10.1088/2631-8695/ac8ae2
View Download