A REVIEW ON TROPICAL CYCLONES

Authors:

Indrajit Ghosh,Sukhen Das,Nabajit Chakravarty,

DOI NO:

https://doi.org/10.26782/jmcms.2021.12.00003

Keywords:

tropical cyclone,cyclostrophic flow,thermal wind,gale wind,wind gusts,storm surge,bathymetry,barotropic wind,baroclinic atmosphere,gradient wind,potential temperature,

Abstract

In this review, we have discussed the important recent theoretical research works on tropical cyclone dynamics. For mitigation of the devastating effect of tropical cyclones on coastal human civilization more and more advanced forecasting techniques are evolving nowadays with the increase in the frequency of generation of tropical cyclones. Thus it is of utmost necessity to understand the anatomy and physiology of the dynamics of tropical cyclones. So researchers explain the cyclonic system from a different point of view and that is highlighted in this review. So this review illustrates, in brief, some important developed models.

Refference:

I. Arora, K., P. Dash, 2016: Towards dependence of tropical cyclone intensity on sea surface temperature and its response in a warming World.vMDPIArticlebClimate.,b4,30.b https://doi.org/10.3390/cli4020030.
II. Back, L. E., and C. S. Bretherton, 2005: The relationship between wind speed and precipitation in the pacific ITCZ. J. Clim.,18, 4317-4328.
III. Back, L. E., and C. S. Bretherton, 2009: On the relationship between SST gradients, boundary layer winds and convergence over the tropical oceans. J. Clim., 22, 4182-4196.
IV. Bretherton, C. S., E. M. Peters., and L. E. Back, 2004: Relationship between water vapour path and precipitation over tropical oceans. J. Clim., 17, 1517-1528. https://doi.org/10.1175/1520
V. Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Clim.,17, 2688-2701.
VI. Choi, Y., K. J. Ha, and H. Chang. H, 2015: Interdecadal change in typhoon genesis condition over the western north Pacific. Climate Dynamics., 45, 3243-3255. https://doi.org/10.1007/s00382
VII. Crinivec, N., R. K. Smith, G. Kilroy, 2015: Dependance of tropical cyclone intensification rate on sea surface temperature. . R. Meteorol. Soc., 141, 1618-1627. https://doi.org/10.1002/qj.2752.
VIII. Charney, J. G., and A. Eliasen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 68-75. https://doi.org/10/1175/1520-0469(1964)021<0068:OTGOTH>2.0CO;2
IX. Davis, C. A., 1992: Piecewise potential vorticity inversion. J. Atmos. Sci., 48, 1666-1689.
X. De Maria, M., and J. Kaplan, 1994a: A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Weather. Forecast.,19, 209-220.
XI. De Maria, M., and J. Kaplan, 1994b: Sea- surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Clim.,7, 1324-1334.
XII. De Maria, M., and J. Kaplan, 1999: An updated statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic and east north Pacific basins. Weather. Forecast.,14, 326-337.
XIII. Emanuel, K., 1986: An air-sea interaction theory for tropical cyclones. Part 1: steady state maintenance. J. Atmos. Sci.,43, 545-604.

XIV. Emanuel, K., 1991: The theory of hurricanes. Annu. Rev. Fluid. Mech., 23, 179-196.
XV. Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature., 436, 686-688. https://doi.org/10.1038/nature 03906
XVI. Emanuel, K., 2007: Environmental factors affecting tropical cyclone power dissipation. J. Clim., 20, 5497-5509. https://doi.org/10.1175/2009JCLI1571.1.
XVII. Emanuel, K., 2011. Time- dependent, axisymmetric model phrased in R-space. Tropical Meteorology, Lecture ocw.mit.edu/earth-atmospheric-and-planetary-sciences/12-811S1lecture-22.pdf.
XVIII. Estoque, M. A., 1962: Vertical and radial motions in a tropical cyclone. Tellus. A.,14, 394-402. https://doi.org/10.3402/tellusa.v14i4.9566.
XIX. Frank, W.M., 1977: The structure and energetics of the tropical cyclone I. storm structure. Mon. Wea. Rev., 105, 1119-1135.
XX. Ghosh, I., and N., Chakravarty, 2017: Extreme Weather Situations: Tropical Cyclones, some analytic perspectives. National Conference on Thunderstorms Socio-economic impacts, early warning and risk management by IMD and IMS.
XXI. Ghosh, I., and N., Chakravarty, 2018: Tropical cyclones: expressions for the velocity components and stability parameter. Nat. Haz., 94, 1293-1304. https://doi.org/10.1007/s11069-018-3477-7.
XXII. Ghosh, I., Das, S., and N., Chakravarty, 2020: Stellar scientillations and occultation: An astrophysical approach to the guiding turbulence in tropical cyclones. 1st International e-conference on Recent Advances in Physics and Material Science-2020. Darjeeling, West Bengal.
XXIII. Giaiotti, D. B., and F. Stel, 2006: The Rankine vortex model. https:// moodle2.units.it/pluginfile…. php/21382/mod…/1/rankine-vortex-notes.pdf. Accessed 4 October 2006…
XXIV. Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part II: Forecasting its variability. Mon. Wea. Rev., 112, 1669-1683. https://doi.org/10.1175/1520-0493(1984)112<1669:ASHFPI>2
XXV. Gray, W. M., 1998: The formation of tropical cyclones. Meteorol. Atmos. Phys.,67, 37-69.
XXVI. Griffiths, D. J., 2005: Introduction to quantum mechanics, 2nd edn. Pearson Education, Chennai.
XXVII. Hack, J. J., and W. H. Schubert, 1986: Non-linear response of atmospheric vortices to heating by organized convection. J. Atmos. Sci., 43, 1559-1573.
XXVIII. Hawkins, H. F., and D. T. Rubsam, 1968: Hurricane Hilda, ii) Structure and budgets of the hurricane. Mon. Wea. Rev.,96, 617-636.
XXIX. Hawkins, H. F., and S. M. Imbembo, 1976: The structure of small intense hurricane Inez 1966. Mon. Wea. Rev., 104, 418-442.
XXX. Holton, J. R., 1972. An introduction to dynamic meteorology, 4th edition, Academic Press, london, p 535 .
XXXI. Kieu, C. Q., 2004a: An analytical theory for the early stage of the development of hurricanes: part-1. arXiv:physics/0407073. Accessed 2004 .
XXXII. Kieu, C. Q., 2004b: An analytical theory for the early stage of the development of hurricanes: part-2. arXiv:physics . Accessed 2004 .
XXXIII. Kieu, C. Q., 2008: Theoretical and numerical studies of tropical cyclone development. https://drum.lib.umd.edu/handle/1903/8597. Accessed July, 2008 .
XXXIV. Kilroy, G., M. T. Montgomery, and R. K. Smith, 2014: Why do model tropical cyclones intensify more rapidly at low latitudes ? J. Atmos. Sci.,72, 1783-1804. https://doi.org/10.1175/JASD-14-0044.
XXXV. Kilroy, G., M. T. Montgomery, and R. K. Smith, 2017: The role of boundary layer friction on tropical cyclogenesis and subsequent intensification. Meteorol. Soc.,143, 2524-2536. https://doi.org/10.1002/qj.3104
XXXVI. Koteswaram, P., 1967: On the structure of hurricanes in the upper troposphere and lower stratosphere. Mon. Wea. Rev., 95, 541-564.
XXXVII. Lala, S. et al., 2014: Mathematical explanation of earlier dissipation energy of tilted cyclone. . climatol. wea. fore.,2, 113. https://doi.org/10.4172/2332-2594.1005.
XXXVIII. La Seur, N. E., and H. F. Hawkins, 1963: An analysis of hurricane Cleo (1958) based on data from research reconnaissance aircraft. Mon. Wea. Rev,91, 694-709. https://doi.org/10.1175/1520-
XXXIX. Levina, V. G., and M. T. Montgomery, 2013: When will cyclonegenesis commence given a favorable environment. IUTAM Symposium on the dynamics of extreme events influenced by climate change.17, 59-68.
XL. Liu, Y., D. Chen, S. Li, P.W. Chan, and Q. Zhang, 2019: A three dimensional numerical simulation approach to access natural hazards. Nat. Haz.,96, 809-835.https://doi.org/10.1007/s. 069-019-03570-y.
XLI. Macbride, J. L., 1995: Tropical cyclone formation: Global perspectives on tropical cyclones: NMO/TDNO. 693, Rep-TCP-38, World Meteorological Organisation, PP. 63-105.
XLII. Mandal J. C., 1986: A model of tropical storm from temperature anomaly distributions. Mausam.,9, 367-374.
XLIII. Mallen K. J., M. T. Montgomery, and B. Wang, 2005: Re-examining the near core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency. Atmos. Sci., 62, 408-425.
XLIV. Möler, J. D., and M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three dimensional balance model. J. Atmos. Sci., 57, 3366-3387.
XLV. Möler, J. D., and L. J. Shapiro, 2002: Balanced contributions to the intensification of hurricane Opal as diagonised from the GFDL model forecast. Mon. Wea. Rev., 130 , 1866-1881.
XLVI. Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci.,26, 3-40.
XLVII. Palmen, E., 1948: On the formation and structure of tropical cyclones. Geophysica.,3, 26-28.
XLVIII. Powell, M. D., A. T. Reinhold, 2007: Tropical cyclone destructive potential by integrated kinetic energy. Bull. Am. Meteorol. Soc., 88, 513-526. https://doi.org/10.1175/1520-0469 (2003) 060<2064:CFITIC>2.0.
XLIX. Raga, G. B., and D. J. Raymond, 2003: Convective forcing in the intertropical convergence zone of the Eastern Pacific. J. Atmos. Sci., 60, 2064-2082.
L. Raymond, D. J., S. L. Sessions, and . Fuchs, 2009, The mechanics of gross moist stability. J. Adv. Model. EarthSyst., 1, 1-20. https://doi.org/10.3894/JAMES.2009.1.9.
LI. Reasor, P. D., M. T. Montgomery, F. D. Marks. Jr, and J. F. Gamache, 2000: lowwavenumber structure and evolution of the hurricane inner core observed by airborne and dual- doppler rader. Mon. Wea. Rev.,6, 1653-1680. https://doi.org/10.1175/1520-0493(2000)128<1653:L. LII. Riehl, H., 1948: On the formation of typhoons. J. Meteor.,5, 247-265. LIII. Riehl, H., and J. Malkus, 1961: Some aspects of hurricane Daisy. Tellus., 2, 181-213. LIV. Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378-394. LV. Shapiro, L. J., and S. B. Goldenberg, 1998: Atlantic sea surface temperature and tropical cyclone formation. J. Clim.,11, 578-590. LVI. Smith, R. K., 2006: Tropical cyclone lecture notes. wwww.meteophysik.uni-munchen.de/ roger/Lectures/Tropical-Cyclones/060510-tropical-cyclones.pdf. Accessed 2 June, 2006 . LVII. Sundqvist, H., 1970: Numerical simulation of the development of tropical cyclones with a ten level model, I. Tellus.,22, 359-390. LVIII. Smith, R.K., and M.T. Montgomery, 2010: Hurricane boundary-layer theory. Q. J. R. Meteorol. Soc., 136, 1665-1670. LIX. Wang, L. X., 2016: Inter- comparison of extra tropical cyclone activity in nine reanalysis data sets. J. Atmos. Res., 181, 133-153. https:// doi.org/1016/j.atmosres.2016.06.010. LX. Wang, Y., and C. C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes-a review. Meteorol. Atmos. Phys., 87, 257-278. https://doi.org/10.1007/s00703003-0056-6. LXI. Wang, X., and D. L. Zhang, 2003: Potential vorticity diagnosis of a simulated hurricane Part-1: Formulation and quasi-balanced flow. J. Atmos. Sci., 60, 1593-1607. LXII. Wang, Y., and J. Xu, 2010: Energy production, frictional dissipation and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67, 97-116. https:// doi.org /10.1175/2009JAS3143.1. LXIII. Whitney, L.D., and J. S. Hobgood, 1997: The relationship between sea surface temperature and maximum intensities of tropical cyclones in the Eastern North Pacific Ocean. J. Clim., 10, 2921-2930. https://doi.org/10.1175/1520-0442(1997)010 <2921:TRBSST> 2.0.CO; 2https://texmex.mit.edu.
LXIV. Williams, G. J., R. K. Taft, B. D. Mcnoldy, and W. H. Schubert, 2013: Shock- like structures in the tropical cyclone boundary layer. Adv. Model. Earth Syst., 5, 338-353 https://doi.org/0.1002/jame.20028
LXV. Yanai, M., 1964: Formation of tropical cyclones. Rev. Geophys., 2, 367-414.
LXVI. Zhang, W., D. L. Zhang, and H. C. Lu, 2009: A theory for mixed vortex Rossby gravity waves in tropical cyclones. J. Atmos. Sci.,66, 3366-3381.https://doi.org/10.1175/2009JAS3060.1.
LXVII. Zhang, J. A., R. F. Rogers, P. D. Reasor, E. W. Uhlhorn, and F. D. Marks. Jr, 2013: As- symetric hurricane boundary layer structure form dropsonde composites in relation to the environment vertical wind shear. Mon. Wea. Rev., 141, 3968-3984. https://doi.org/10.1175/MWRD-12-00335.1.

View Download