Authors:
J S Banerjee,A Chakraborty,A Chattopadhyay,DOI NO:
https://doi.org/10.26782/jmcms.2018.06.00005Keywords:
Best Relay selection,Relay node,Cognitive radio Networks,Decision making,analytical hierarchy process,Fuzzy analytical hierarchy process,Abstract
In cooperative transmission selection of relay is considered to be the crucial factor for reliable transmission where multiple parameters are there for decision making. Again, many existing research works highlighted the problem, but none of them considered the vagueness & uncertainty of the decision makers. Currently, Fuzzy analytic hierarchy process (FAHP) proves to be an advantageous scheme for multiple criteria decision-making (MCDM) in fuzzy conditions. This paper provides FAHP-based relay node selection scheme that prioritizes the fuzziness of the decision makers during the relay node selection procedure. Numerical examples and simulation study, both are carried out to find out the best relay. The simulation study reveals the fact that the proposed scheme outperforms the existing systems.Refference:
I.Akyildiz, I. F.; Wang, X. and Wang, W. “Wireless mesh networks: a survey”. Computer networks, 47(4), pp 445-487 (2005).
II.Akyildiz, I. F.; et. al. “CRAHNs: Cognitive radio ad hoc networks”. Ad Hoc Networks, 7(5), pp 810-836 (2009).
III.Buckley J. J. “Fuzzy hierarchical analysis. Fuzzy sets and systems”, 17(3), pp 233-247, (1985)
IV.Banerjee J.S.; Chakraborty A. and Chattopadhyay A. “Fuzzy Based RelaySelection for Secondary Transmission in Cooperative Cognitive RadioNetworks”. In: Proc. OPTRONIX, Springer, pp 279-287 (2017).
V.Banerjee J.S.; Chakraborty A and Chattopadhyay A. “Relay node selection using analytical hierarchy process (AHP) for secondary transmission in multi-user cooperative cognitive radio systems”. In: Proc. ETAEERE, Springer, pp 745-754 (2018).
VI.Banerjee, J. S. and Chakraborty, A. “Fundamentals of Software DefinedRadio and Cooperative Spectrum Sensing: A Step Ahead of CognitiveRadio Networks”. In Handbook of Research on Software-Defined andCognitive Radio Technologies for Dynamic Spectrum Management, IGIGlobal, pp 499-543 (2015).
VII.Banerjee, J.S.; Chakraborty, A. and Karmakar, K. “Architecture ofCognitive Radio Networks”. In N. Meghanathan & Y.B.Reddy (Ed.),Cognitive Radio Technology Applications for Wireless and Mobile AdHoc Networks, IGI Global, pp 125-152 (2013).
VIII.Banerjee, J.S. and Chakraborty, A. “Modeling of Software Defined RadioArchitecture & Cognitive Radio, the Next Generation Dynamic and SmartSpectrum Access Technology”. In M.H. Rehmani & Y. Faheem (Ed.),
Cognitive Radio Sensor Networks: Applications, Architectures, and Challenges, IGI Global, pp. 127-158 (2014).
IX. Banerjee, J.S. and Karmakar, K. “A Comparative Study on Cognitive Radio Implementation Issues”. International Journal of ComputerApplications, 45(15), No.15, pp 44-51 (2012).
X.Chakraborty, A. and Banerjee, J. S. “An Advance Q Learning (AQL) Approach for Path Planning and Obstacle Avoidance of a Mobile Robot”. International Journal of Intelligent Mechatronics and Robotics, 3(1), pp 53-73 (2013).
XI.Chakraborty, A.; Banerjee, J. S. and Chattopadhyay, A. “Non-UniformQuantized Data Fusion Rule Alleviating Control Channel Overhead forCooperative Spectrum Sensing in Cognitive Radio Networks”. In: Proc.IACC, pp 210-215 (2017).
XII.FCC (2003). ET Docket No 03-222 Notice of proposed rule making andorder.
XIII.Gao, X.; Wu, G. and Miki, T. “End-to-end QoS provisioning in mobileheterogeneous networks”.Wireless Communications, IEEE, 11(3), pp 24-34 (2004).
XIV.Jing, T.; Zhu, S.; Li, H.; Xing, X.; Cheng, X.; Huo, Y.; … and Znati, T.“Cooperative relay selection in cognitive radio networks”. IEEETransactions on Vehicular Technology, 64(5), pp 1872-1881(2015).
XV.Kandukuri, S. and Boyd, S. “Optimal power control in interference-limited fading wireless channels with outage-probability specifications”.IEEE transactions on wireless communications, 1(1), pp 46-55 (2002).
XVI.Laneman, J. N.; Tse, D. N. and Wornell, G. W. “Cooperative diversity inwireless networks: Efficient protocols and outage behavior”. IEEETransactions on Information theory, 50(12), pp 3062-3080 (2004).
XVII.Mitola, J. and Maguire Jr, G. Q. “Cognitive radio: making software radiosmore personal”. IEEE Personal Communications, 6(4), pp 13-18 (1999).
XVIII.Mitola,J. III.”Cognitive Radio— An Integrated Agent Architecture forSoftware Defined Radio”. Sweden: Royal Institute of Technology, (2000).
XIX.Paul S.; et. al. “A Fuzzy AHP-Based Relay Node Selection Protocol forWireless Body Area Networks (WBAN)”. In: Proc. OPTRONIX 2017(Press), IEEE, Nov. (2017).
XX.Paul S.; et. al.“The Extent Analysis Based Fuzzy AHP Approach for Relay Selection in WBAN”. In: Proc. CISC (Press), AISC-Springer, (2018).
XXI.Saha O.; Chakraborty A. and Banerjee J. S. “A Decision Framework ofIT-Based Stream Selection Using Analytical Hierarchy Process (AHP) for
Admission in Technical Institutions”. In: Proc. OPTRONIX 2017 (Press),IEEE, Nov. (2017).
XXII.Saha O.; Chakraborty A. and Banerjee J.S.: A Fuzzy AHP Approach toIT-Based Stream Selection for Admission in Technical Institutions inIndia. In: Proc. IEMIS (Press), AISC-Springer, (2018).
XXIII.Simeone, O.; Gambini, J.; Bar-Ness, Y. and Spagnolini, U. “Cooperationand cognitive radio”. In ICC, IEEE, pp 6511-6515 (2007)
XXIV.Zou, Y.; Zhu, J.; Zheng, B.; Tang, S. and Yao, Y. D. “A cognitivetransmission scheme with the best relay selection in cognitive radionetworks”. In GLOBECOM, IEEE, pp 1-5 (2010).
XXV.Zhang, Q.; Jia, J. and Zhang, J. “Cooperative relay to improve diversity in cognitive radio networks”. IEEE Communications Magazine, 47(2), pp111-117 (2009).
Author(s): J S Banerjee, A Chakraborty, A Chattopadhyay View Download