POINT WISE QUASICONTINUTTY AND BAIRE SPACES
Authors:
Sucharita Chakrabarti, Saibal Ranjan Ghosh , Hiranmany DasguptaDOI NO:
https://doi.org/10.26782/jmcms.2010.01.00001Abstract:
In this paper, it is proved that the notions of point wise semi-continuity and quasicontinuity are the same even when the mapping is not globally semi-continuity. The concept of removable quasicontinuity at a point is introdeced with some of its applications [Theorem 4.1]. Finally, a set of sufficient conditions for a topological space to be a Baire space is formulated. In particular, it was shown that if every mappimg from a topological space X to an infinite T2 space is quasicontinuity then X is a Baire space.Keywords:
baire space,topological space,quasicontinuity,Refference:
I. Biswas, N. Atti Accad. Naz. Lincei. Sci.Fis. Mat. Natur. Series 8. Vol 48(1970), 399
II. Crossely, S.G. and Hildebra, S.K. Texas J. Sci.22(1971), 99-112.
III. Das, P. Prgr. M.M., Vol.2, No.1(1973),33-34.
IV.Das , P.I.J.M.M., Vol.2,No.1(1974),31-44
V. Dasgupta, H. and Lahiri, B.K. Acta Ciencia Indica. Vol.XII m No.1(1986),35-39.
VII. Ghose, S.R. and dasgupta, H.Bull.Cal.Math.Soc.97(2005),(4),283-296.
VIII. Halfer, E.Proc. Amer. Math.Soc. 11(1960), 688-691.
IX. Husain, T.Prace, Mathematyczne.10(1966),1-7.
X. Kuratowski, K. Topology, Academic Press. Vol1,1966.
XI. Levine, N. Amer.Math.Monthly.70(1963),36-41.
XII. Lin, S-Y.T. and Lin, Y-F.T. Canad. Bull.21 (1978), 183-186.
XIII. Long, P.E. Amer.Math.Monthly.76(1969, 930-932.
XIV. Long, P.E. Charles, E.Merril Publ. Co., Columbus, Ohio, 1971.
XV. Neubrunn, T.Math. Slovaca 26(1976),97-99
XVI. Neubrunnova, A.Mat. Cas. 23(1973)374-380
XVII. Tong, Jing Cheng Internet. J.Math. and Math.Sci. Vol.7(1983) No.1, 197-199.
XVIII. Tong,Jing Cheng Internet. J.Math. And Math. Sci. Vol.7(1984) No.3, 619-620
XIX. Wilansky, A. Topology for analysis, Ginn, Walthham, Mass, 1970.
View Download