NUMERICAL TREATMENT OF NON-DARCIAN EFFECT ON PULSATILE MHD POWER-LAW FLUID FLOW WITH HEAT TRANSFER IN A POROUS MEDIUM BETWEEN TWO ROTATING CYLINDERS
Authors:
Mokhtar A. Abd Elnaby, Nabil T.M. Eldabe, Hanaa A. AsfourDOI NO:
https://doi.org/10.26782/jmcms.2008.12.00001Abstract:
- The problem of unsteady magneto hydrodynamic flow with heat transfer of a non-Newtonian fluid obeying power low fluid in a porous medium between two coaxial cylinders is investigated when the inner cylinder is at rest and the outer cylinder rotates with constant velocity, taking into account pulsation the pressure gradient and Darcy dissipation term. A Rung-Kutta-Merson method and a Newtown Iteration in a shooting and matching technique are used to obtain the solution of the system Equations of the problem. The velocity and temperature distributions are obtained as a perturbation technique. During this work we calculate an estimation of the global error by using Zadunaisky technique. The effects of behaviour index, Reynolds number, steady state part of the pressure gradient, the amplitude of the oscillatory part, the magnetic parameter, the permeability parameter, Forschheimer number, Prandtl number, Eckert number on the velocity and temperature distributions of Newtown and non- Newtown fluid are evaluated and depicted graphically.
Keywords:
Non-Darcain effect,Fluid flow ,Heat transfer,Rotating calender.,Refference:
I. Long Q., Xua X.Y., Ramnarine K.V. and Hoskins P. Journal of Biomechanics 34(2001), 1229.
II. Phillips E.M. And Chiang S.H. Int. J.Engng Sci. 11(1973), 579.
III. McDonald D.A. “Blood flow in arteries”, Edward Arnold, London. 1974.
IV. Bitoun J.P. and Bellet D.: Biorheology, 23(1986), 51.
V. Ahmed S.A. and Giddens D.P.: J. Biomech, 17(1984),695.
VI. Lieber B. pH. D. Thesis, Georgia Institute of Technology, Atlanta (1985).
VII. Ojha M., Cobbold R.S.C., Johnston K.W. and Hummel R.J. Fluid. Mech. 203 (1989), 173.
VIII. Hong J.T., Tien C.L. and Kaviany M.Int. J. Heat Mass Transfer. 28 No. 11(1985), 2149.
IX. Andresson H.I., Bech K.H. and Dandapat B.S. Int. J. Nonlinear Mechanics. 27No.6(1992),929.
X. Nakayama A. Transactions of the ASME. 114(1992), 642.
XI. Nakayama A. Int. J. Heat and Fluid. 14 no.3(1993). 278.
XII. Agrawal A.K. and Sengupta S. Int. J. Heat and Fluid Flow. 11. No.1(1990), 54.
XIII. Mokhtar A. Abdelnaby, Nabil T.M Eldabe and Mohammed Y. Abo zeid: J.Ind.Theo.Phys. (2006), in press. 4164.
XIV. Nabil T.M. Eldabe, Sadeek G. and Asma F. El-Sayed. Phys. Soc. Japan. 64(1995), 4165.
XV. Batra R.L. and Biggani Das: Fluid Dynamic Research, 9 (1992), 133.
XVI. Ibrahim F.N. phys. D: APPL. Phys. 24(1991), 1293.
XVII. Zadunaisky, P.E: Numer. Math. 27(1976),21.
View Download