Journal Vol – 18 No -2, February 2023

A NOVEL CONCEPT FOR FINDING THE FUNDAMENTAL RELATIONS BETWEEN STREAM FUNCTION AND VELOCITY POTENTIAL IN REAL NUMBERS IN TWO-DIMENSIONAL FLUID MOTIONS

Authors:

Prabir Chandra Bhattacharyya

DOI NO:

https://doi.org/10.26782/jmcms.2023.02.00001

Abstract:

In this paper, the author has presented the fundamental relations between stream function or current function,  and velocity potential or velocity function, φ which are ∂φ/∂x= ∂/∂y and ∂φ/∂y= - ∂/∂x where x,y,φ(x_(, ) y),  (x_(, ) y) are all real in two-dimensional fluid motions using real variables only whereas these relations had been established by using complex variables by Cauchy – Riemann which are known as Cauchy – Riemann equations in fluid dynamics.

Keywords:

Riemann equations,Quadratic equations,Rectangular Bhattacharyya’s Coordinates,Stream function,Theory of Dynamics of Numbers,Velocity potential,

Refference:

I. A. Roshko. 1993. Perspectives on Bluff Body Aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics 49.1-3:79–100.
II. Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cambridge University Press, ISBN 0-521-09817-3.
III. Cauchy, Augustin L. (1814). Mémoire sur les intégrales définies. Oeuvres complètes Ser. 1. Vol. 1. Paris (published 1882). pp. 319–506.
IV. Chanson, H. (2007). “Le Potentiel de Vitesse pour les Ecoulements de Fluides Réels: la Contribution de Joseph-Louis Lagrange” [Velocity Potential in Real Fluid Flows: Joseph-Louis Lagrange’s Contribution]. Journal la Houille Blanche. 93 (5): 127–131. doi:10.1051/lhb:2007072. ISSN 0018-6368. S2CID 110258050.
V. d’Alembert, Jean (1752). Essai d’une nouvelle théorie de la résistance des fluides. Paris: David l’aîné. Reprint 2018 by Hachette Livre-BNF ISBN 978-2012542839.
VI. D. Coles. 1965. Transition in Circular Couette Flow. Journal of Fluid Mechanics. 21(3):385–425.
VII. Dieudonné, Jean Alexandre (1969). Foundations of modern analysis. Academic Press. §9.10, Ex. 1.
VIII. Euler, Leonhard (1797). “Ulterior disquisitio de formulis integralibus imaginariis”. Nova Acta Academiae Scientiarum Imperialis Petropolitanae. 10: 3–19.
IX. G.I. Taylor. 1923. VIII. Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Royal Soc. London. Series A, Containing Papers of a Mathematical or Physical Character 223:289–343.
X. G.I. Taylor. 1923. VIII. Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Royal Soc. London. Series A, Containing Papers of a Mathematical or Physical Character 223:289–343.
XI. Gamelin, T. W. (2001), Complex Analysis, New York: Springer, ISBN 0-387-95093-1
XII. Gray, J. D.; Morris, S. A. (April 1978). “When is a Function that Satisfies the Cauchy–Riemann Equations Analytic?”. The American Mathematical Monthly. 85 (4): 246 – 256 doi:10.2307/2321164. JSTOR 2321164.
XIII. Gray & Morris 1978, Theorem 9.
XIV. Iwaniec, T.; Martin, G. (2001). Geometric function theory and non-linear analysis. Oxford. p. 32.
XV. Kobayashi, Shoshichi; Nomizu, Katsumi (1969). Foundations of differential geometry, volume 2. Wiley. Proposition IX.2.2.
XVI. Lagrange, J.-L. (1868), “Mémoire sur la théorie du mouvement des fluides (in: Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Berlin, année 1781)”, Oevres de Lagrange, vol. Tome IV, pp. 695–748.
XVII. Lamb (1932, pp. 62–63) and Batchelor (1967, pp. 75–79)
XVIII. Lamb, H. (1932), Hydrodynamics (6th ed.), Cambridge University Press, republished by Dover Publications, ISBN 0-486-60256-7.
XIX. Looman 1923, p. 107.
XX. Looman, H. (1923). “Über die Cauchy–Riemannschen Differential gleichungen”. Göttinger Nachrichten (in German): 97–108.
XXI. Massey, B. S.; Ward-Smith, J. (1998), Mechanics of Fluids (7th ed.), UK: Nelson Thornes.
XXII. O. Reynolds. 1883. XXIX. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. Royal Soc. London 174: 935–982.
XXIII. P.R. Viswanath, R. Narasimha, A. Prabhu. 1978. Visualization of Relaminarizing Flows. Journal of the Indian Institute of Science. 60(3):159–166.
XXIV. Pólya, George; Szegő, Gábor (1978). Problems and theorems in analysis I. Springer. ISBN 3-540-63640-4.
XXV. Prabir Chandra Bhattacharyya, ‘AN INTRODUCTION TO RECTANGULAR BHATTACHARYYA’S CO-ORDINATES: A NEW CONCEPT’. J. Mech. Cont. & Math. Sci., Vol.-16, No.-11, November (2021). pp 76-86.
XXVI. Prabir Chandra Bhattacharyya, ‘AN INTRODUCTION TO THEORY OF DYNAMICS OF NUMBERS: A NEW CONCEPT’. J. Mech. Cont. & Math. Sci., Vol.-16, No.-11, January (2022). pp 37-53.
XXVII. Prabir Chandra Bhattacharyya, ‘A NOVEL CONCEPT IN THEORY OF QUADRATIC EQUATION’. J. Mech. Cont. & Math. Sci., Vol.-17, No.-3, March (2022) pp 41-63.
XXVIII. Prabir Chandra Bhattacharyya, ‘AN OPENING OF A NEW HORIZON IN THE THEORY OF QUADRATIC EQUATION: PURE AND PSEUDO QUADRATIC EQUATION – A NEW CONCEPT’, J. Mech. Cont. & Math. Sci., Vol.-17, No.-11, November (2022) pp 1-25
XXIX. R. Narasimha. 1957. On the Distribution of Intermittence in the Transition Region of a Boundary Layer. Journal of Aeronautical Science. 711–712.
XXX. R. Narasimha, V. Saxena S. and Kailas. 2002. Coherent Structures in Plumes with and without Off-Source Heating Using Wavelet Analysis of Flow Imagery. Experiments in Fluids. 33(1):196–201.
XXXI. Riemann, Bernhard (1851). “Grundlagen für eine allgemeine Theorie der Funktionen einer veränderlichen komplexen Grösse”. In H. Weber (ed.). Riemann’s gesammelte math. Werke (in German). Dover (published 1953). pp. 3–48.
XXXII. Roddam Narasimha. ‘The search for new mathematics to solve the greatest unsolved problem in classical physics’. Bhāvanā, volume 3, issue 1, January 2019.
XXXIII. Rudin 1966.
XXXIV. Rudin 1966, Theorem 11.2.
XXXV. Rudin, Walter (1966). Real and complex analysis (3rd ed.). McGraw Hill (published 1987). ISBN 0-07-054234-1.
XXXVI. See Klein, Felix (1893). On Riemann’s theory of algebraic functions and their integrals. Translated by Frances Hardcastle. Cambridge: MacMillan and Bowes.
XXXVII. Stokes, G.G. (1842), “On the steady motion of incompressible fluids”, Transactions of the Cambridge Philosophical Society, 7: 439–453, Bibcode:1848TCaPS…7..439S.
Reprinted in: Stokes, G.G. (1880), Mathematical and Physical Papers, Volume I, Cambridge University Press, pp. 1–16.
XXXVIII. “Streamfunction”, AMS Glossary of Meteorology, American Meteorological Society, retrieved 2014-01-30
XXXIX. White, F. M. (2003), Fluid Mechanics (5th ed.), New York: McGraw-Hil

View Download

SIMULATION OF WAVE SOLUTIONS OF A FRACTIONAL-ORDER BIOLOGICAL POPULATION MODEL

Authors:

Md. Sabur Uddin, Md. Nur Alam, Kanak Chandra Roy

DOI NO:

https://doi.org/10.26782/jmcms.2023.02.00002

Abstract:

In this analysis, we apply prominent mathematical systems like the modified (G'/G)-expansion method and the variation of (G'/G)-expansion method to the nonlinear fractional-order biological population model. We formulate twenty-three mathematical solutions, which are clarified hyperbolic, trigonometric, and rational. Using MATLAB software, we illustrate two-dimensional, three-dimensional, and contour shapes of our obtained solutions. These mathematical systems depict and display its considerate and understandable technique that generates a king type shape, singular king shapes, soliton solutions, singular lump and multiple lump shapes, periodic lump and rouge, the intersection of king and lump wave profile, and the intersection of lump and rogue wave profile. Measuring our return and that gained in the past released research shows the novelty of our analysis. These systems are also capable to represents various solutions for other fractional models in the field of applied mathematics, physics, and engineering.

Keywords:

Nonlinear fractional order biological model, the modified -expansion method,the variation of -expansion method, mathematical solutions,nonlinear partial differential equations, lump, and rogue wave,

Refference:

I. A. A. Kilbas, H. M. Sribastova, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, San Diego,2006.
II. A. Bekir ,’Application of the expansion method for nonlinear evolution equations’, Physics Letters A, vol. 372, pp, 3400–3406, 2008.
III. A. Khalid, A. Rehan, K. S. Nisar, and M. S. Osman,’ Splines solutions of boundary value problems that arises in sculpturing electrical process of motors with two rotating mechanism circuit,’ Physics Scripta, vol.96, no. 10, p. 104001, 2021.
IV. A. Korkmaz, O. E. Hepson, K. Hosseini, H. Rezazadeh and M.Eslami,‘ Sine-Gordon expansion method for exact solutions to conformal time fractional equations in RLW-class’, Journal of King Saud University-Science, vol. 32,no.1, 2018.
V. A. R. Shehata and S. S. M. Abu-Amra,’Geometrical properties and exact solutions of the (3+1)-dimensional nonlinear evolution equations in mathematical physics using different expansion methods,’Journal of Advances in Mathematics and Computer Science, vol. 33, pp. 1-19, 2019.
VI. A. Zafar, M. Raheel, M. Q. Zafar et al.,’Dynamics of different nonlinearities to the perturbed nonlinear Schrodinger equation via solitary wave solutions with numerical simulations,’Fractal and Fractional, vol. 5, no. 4, p. 213, 2021.
VII. C. Park, R. I. Nuruddeen, K. K. Ali, L. Muhammad, M. S. Osman, and D. Baleanu,’Novel hyperbolic and exponential ansatz methods to the fractional fifth-order Korteweg de Vries equations,’ Adv. Difference Equ., vol.2020, no. 1, p.627, 2020.
VIII. E. C. Ahsan and M. Inc,‘ Optical soliton solutions of the NLSE with quadratic-cubic-hamiltonian perturbations and modulation instability analysis’, Optik, vol. 196,pp.162661 , 2019.
IX E. M. E.Zayed and K.A. Gepreel ,’The expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics’, Journal of Mathematical Physics, vol. 50 (1), pp, 013502, 2009.
X. G. Jumarie ,’ Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results’, Journal of Computer & Mathematics with Applications , vol. 51(9-10), pp, 1367-1376, 2006.
XI. G. Jumarie ,’Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions’, Journal of Applied Mathematics Letters , vol. 22(3), pp, 378-385, 2009.
XII. G. M. Ismail, H. R. A. Rahim, A. A. Aty, R. Kharabsheh, W. Alharbi and M. A. Aty,‘ An analytical solution for fractional oscillator in a resisting medium’, Chaos, Solitons & Fractals, vol. 130,pp.109395 , 2020.
XIII. H. Ahmed, A. Akgul, T. A. Khan, P. S. Stanimirovic, and Y. M. Chu ,‘ A new analyzing technique for nonlinear time fractional Cauchy reaction-diffusion model equations,’ Results in Physics’ vol. 19,p.103462 , 2020.
XIV. H. Ahmed, A. Akgul, T. A. Khan, P. S. Stanimirovic, and Y. M. Chu ,‘ New perspective on the conventional solutions of the nonlinear time fractional partial differential equations,’ Complexity’ vol. 2020, Article ID 8829017, 10pages,2020.
XV. H. Yepez-Martinez and J. F.Gomez-Agular,‘ Fractonal sub-equation method for Hirota-Satsuma-coupled KdV equation and coupled mKdV equation using the Atangana’s conformable derivative’, Waves in Random and Complex Media , vol. 29,no.4, pp, 678–693, 2019.
XVI. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
XVII. J. G. Liu, W. H. Zhu, M. S. Osman, and W. X. Ma,’An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo-Miwa model’, The European Physical Journal-Plus, vol. 135, no. 5, p. 412, 2020.
XVIII. K. Hosseini, M. Mirzazadeh, M. Ilie and S. Radmehr,‘ Dynamics of optical solitons in the perturbed Gerdjikov-Ivanov equation’, Optik, vol. 206,pp.164350 , 2020.
XIX. K. Hosseini, M. Mirzazadeh, J. Vahidi and R. Asghari,‘ Optical wave structures to the Fokas-Lenells equation’, Optik, vol. 207,pp.164450 , 2020.
XX. K. K. Ali, R. Yilmazer, and M. S. Osman,’Dynamic behavior of the (3+1)-dimensional KdV-Calogero-Bogoyavlenskii-Schiff equation,’Optical and Quantum Electronics, vol. 54, no. 3, p. 160, 2022.
XXI. K. S. Miller and B. Ross,’An introduction to the fractional calculus and fractional differential equations, Wiley, New York,1993.
XXII. M. N. Alam, A. R. Seadawy and D. Baleanu,‘Colsed-form wave structures of the space-time fractional Hirota-Satsuma coupled KdV equation with nonlinear physical phenomena,’ Open Physics, vol. 18,no.1,pp, 555–565, 2020.
XXIII. M. N. Alam, A. R. Seadawy and D. Baleanu,‘ Colsed-form wave solutions to the solitary wave equation in an unmaganatized dusty plasma’, Alexandria Engineering Journal , vol. 59,no.3, pp, 1505–1514, 2020.
XXIV. M. N. Alam and C. Tunc,‘The new solitary wave structures for the (2+1)-dimensional time fractional Schrodinger equation and the space-time nonlinear conformal fractional Bogoyav-lenskii equations,’ Alexandria Engineering Journal , vol. 59,no.4, pp, 2221–2232, 2020.
XXV. M. N. Alam, S. Aktar and C. Tunc,‘New solitary wave structures to time fractional biological population model ,’ Journal of Mathematical Analysis-JMA, vol. 11,no.3,pp, 59–70, 2020.
XXVI. M. N. Alam and X. Li,‘ New soliton solutions to the nonlinear complex fractional Schrodinger equation and conformal time-fractional Klein-Gordon equation with quadratic and cubic nonlinearity,’ Physics Scripta , vol. 95, no.4, pp, 045224, 2020.
XXVII. M. S. Osman, H. Rezazadeh and M. Eslami,’Traveling wave solutions for (3+1) dimensional conformal fractional Zakharov-Kuznetsov equation with power law nonlinearity’, Nonlinear Engineering, vol. 8, no. 1, pp. 559-567, 2019.
XXVIII. M. Wang, X. Li and J. Zhang,’The expansion method and travelling wave solutions of nonlinear evolution equation in mathematical physics’, Physics Letters A, vol. 372(4), pp, 417–423, 2008.
XXXIX. S. Zhang and H. Q. Zhang,‘ Fractonal sub-equation method and its applications to the nonlinear fractional PDEs’, Physics Letters A, vol. 375,no.7, pp, 1069–1073, 2011.
XXX. S. Zhang, J. L.Tong and W. Wang ,’A generalized expansion method for the mKdv equation with variable coefficients’, Physics Letters A, vol. 372, pp, 2254–2257, 2008.
XXXI. Z. B. Li and J. H. He ,’Fractional Complex Transform for Fractional Differential Equations’, Journal of Mathematical and Computer Applications , vol. 15(5), pp, 970-973, 2010.
XXXII. Z. B. Li and J. H. He ,’Applications of the Fractional Complex Transformation to Fractional Differential Equations’, Nonlinear science letters. A, Mathematics, physics and mechanics, 2, 121, 2011.

View Download

ANALYZING THE ROLE OF WORK-LIFE BALANCE ON EMPLOYEE LOYALTY IN INDIAN STARTUPS: A LINEAR REGRESSION-BASED APPROACH

Authors:

Chanchal Dey

DOI NO:

https://doi.org/10.26782/jmcms.2023.02.00003

Abstract:

Employee contributions have been widely acknowledged as critical to the growth of startups. Due to a lack of established structure and a need for more resources, startup employees often put in long hours with high workloads. Employees often take on multiple roles within a startup, each tailored to the business's specific needs at any time. This results in employees being subjected to stress at work that could eventually lead them to become disloyal to their employers due to the difficulties associated with juggling work and personal duties. Therefore, this study examines how work-life balance affects employee loyalty based on the perception of employees working in startups in Kolkata, Bangalore, and New Delhi. With the help of statistical analysis techniques like correlation and regression analysis, this study takes a quantitative approach to the phenomenon being investigated, surveying 120 startup employees. The study's results indicate that a healthy work-life balance is associated with greater employee loyalty. This paper fills a vacuum in the literature and contributes significantly to the expanding body of research that prioritizes work-life harmony to retain loyal employees.

Keywords:

Work-life balance,Employee loyalty,India,Startups,

Refference:

I. Allen, N. J., & Grisaffe, D. B. (2001). Employee commitment to the organization and customer reactions: Mapping the linkages. Human Resource Management Review, 11(3), 209–236. https://doi.org/10.1016/S1053-4822(00)00049-8
II. Anscombe, F. J., & Glynn, W. J. (1983). Distribution of the kurtosis statistic b 2 for normal samples. Biometrika, 70(1), 227–234. https://doi.org/10.1093/biomet/70.1.227
III. Bérastégui, P. (2021). Exposure to Psychosocial Risk Factors in the Gig Economy: A Systematic Review. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3770016
IV. Chaudhari, S. L., & Sinha, M. (2021). A study on emerging trends in Indian startup ecosystem: Big data, crowd funding, shared economy. International Journal of Innovation Science, 13(1), 1–16. https://doi.org/10.1108/IJIS-09-2020-0156
V. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555
VI. Garg, M., & Gupta, S. (2021). Startups and the Growing Entrepreneurial Ecosystem. Journal of Intellectual Property Rights, 26(1). https://doi.org/10.56042/jipr.v26i1.35258
VII. Javalgi, R. (Raj) G., & Grossman, D. A. (2016). Aspirations and entrepreneurial motivations of middle-class consumers in emerging markets: The case of India. International Business Review, 25(3), 657–667. https://doi.org/10.1016/j.ibusrev.2015.10.008
VIII. Malhotra, N. K., & Birks, D. F. (2007). Marketing research: An applied approach (3. European Ed). Financial Times Prentice Hall.
IX. Matzler, K., & Renzl, B. (2006). The Relationship between Interpersonal Trust, Employee Satisfaction, and Employee Loyalty. Total Quality Management & Business Excellence, 17(10), 1261–1271. https://doi.org/10.1080/14783360600753653

X. Mukul, K., & Saini, G. K. (2021). Talent acquisition in startups in India: The role of social capital. Journal of Entrepreneurship in Emerging Economies, 13(5), 1235–1261. https://doi.org/10.1108/JEEE-04-2020-0086
XI. Panda, S., & Dash, S. (2016). Exploring the venture capitalist – entrepreneur relationship: Evidence from India. Journal of Small Business and Enterprise Development, 23(1), 64–89. https://doi.org/10.1108/JSBED-05-2013-0071
XII. Rangrez, S. N., Amin, F., & Dixit, S. (2022). Influence of Role Stressors and Job Insecurity on Turnover Intentions in Start-ups: Mediating Role of Job Stress. Management and Labour Studies, 47(2), 199–215. https://doi.org/10.1177/0258042X221074757
XIII. Roehling, P. V., Roehling, M. V., & Moen, P. (2001). The Relationship Between Work-Life Policies and Practices and Employee Loyalty: A Life Course Perspective. Journal of Family and Economic Issues, 22(2), 141–170. https://doi.org/10.1023/A:1016630229628
XIV. Shenoy, V. (2015). E-Commerce Startups: A Success Story (SSRN Scholarly Paper No. 2831877). https://doi.org/10.2139/ssrn.2831877
XV. Sturges, J., & Guest, D. (2004). Working to live or living to work? Work/life balance early in the career. Human Resource Management Journal, 14(4), 5–20. https://doi.org/10.1111/j.1748-8583.2004.tb00130.x
XVI. Zaiontz, C. (2020). Home Page (Welcome) | Real Statistics Using Excel. Real Statistics Using Excel. https://real-statistics.com/

View Download