Abstract:
Voltage multipliers are used to convert the low AC voltage output of energy harvesters into relatively high DC voltage for portable devices and wireless sensor nodes (WSNs) applications. DC voltage conversion is required to operate an electronic device or recharge battery. In order, to convert the low AC voltage output of the energy harvester into relatively high DC voltage, a voltage multiplier circuit need to be integrated with the energy harvester. In this study, a Prototype-1 (two-stages) and Prototype-2 (three-stage) Dickson voltage multipliers and Prototype-3 (seven-stage) Cockcroft-Walton voltage multiplier circuits are developed. The device is capable of converting a low voltage of 50 mV into 350 mV. The research focuses on the development and characterization of Prototype-1, Prototype-2 and Prototype-3 circuits. Results indicate that the determination of load resistance is important for better output power. The maximum power of 11.97 μW was obtained by prototype-3 elucidating better power compared to prototype-1 and prototype-2 and the power was obtained at an optimum load of 560 kΩ. Furthermore, a rectenna tested at different distances from the source, revealed that a prototype-2 produced a maximum power of 3.01 × 10 -6 μW, at an optimum load of 560 kΩ.
Keywords:
Voltage multipliers,energy harvesters,AC to DC,rectifier,low voltage,flow-based,RF,
Refference:
I. Ahmad M M, Khan F U. Review of vibration-based electromagnetic–piezoelectric hybrid energy harvesters. Int J Energy Res. 2020;1–40. https://doi.org/10.1002/er.6253
II. Ahmad MM, Khan NM, Khan FU. Review of frequency up-conversion vibration energy harvesters using impact and plucking mechanism. Int J Energy Res. 2021;1–37. https://doi.org/10.1002/er.6832
III. Akyildiz, I.F., et al., A survey on sensor networks. IEEE Communications magazine, 2002. 40(8): p. 102-114.
IV A. Leon-Masich, V. Hugo, M. B. Josep, M. Luis, and F. Freddy. High voltage led supply using a hysteretic controlled single stage boost converter. Przeglad Elektrotechniczny, vol. 88, no. 1, pp. 26–30, 2012.
V. Bibhu Prasad Ganthia, Subrat Kumar Barik, Byamakesh Nayak, : ‘APPLICATION OF HYBRID FACTS DEVICES IN DFIG BASED WIND ENERGY SYSTEM FOR LVRT CAPABILITY ENHANCEMENTS’. J. Mech. Cont.& Math. Sci., Vol.-15, No.-6, June (2020) pp 245-256. DOI : 10.26782/jmcms.2020.06.00019
VI. Chang, Y.H. and Y.C. Chen, Multistage multiphase switched‐capacitor DC–DC converter with variable‐phase and PWM control. International Journal of Circuit Theory and Applications, 2012. 40(8): p. 835-857.
VII. Khan F U. A vibration based electromagnetic and piezoelectric hybrid energy harvester. Int J Energy Res. 2020;44: 6894–6916. https://doi.org/10.1002/er.5442
VIII. Khan F, Sassani F, Stoeber B. Nonlinear behaviour of membrane type electromagnetic energy harvester under harmonic and random vibrations. Microsyst. Technol. 2014;20:1323-1335. http://doi.org/10.1007/s00542-013-1938-1.
IX. Khan F U, Qadir M U. State-of-the-art in vibration-based electrostatic energy harvesting. J Micromech Microeng. 2016;26:103001.
X. Khan FU, Khattak MU. Contributed Review: Recent developments in acoustic energy harvesting for autonomous wireless sensor nodes applications. Rev. Sci. Instrum. 2016;87:021501. http://doi.org/10.1063/1.4942102.
XI. Ehab Belal, Hassan Mostafa, Yehea Ismail and M. Sameh Said. A Voltage Multiplying AC/DC Converter for Energy Harvesting Applications.
XII. E. M. Ali, N. Z. Yahaya, N. Perumal, M. A. Zakariya. Development of Cockcroft‐Walton voltage multiplier for RF energy harvesting applications. Journal of Scientific Research and Development 3 (3): 47-51, 2016.
XIII. E. M. Ali, N. Z. Yahaya, N. Perumal and M. A. Zakariya. DESIGN AND DEVELOPMENT OF HARVESTER RECTENNA AT GSM BAND FOR BATTERY CHARGING APPLICATIONS. Journal of Engineering and Applied Sciences VOL. 10, NO 21, NOVEMBER, 2015.
XIV. Filiz SARI, Yunus UZUN. A COMPARATIVE STUDY: VOLTAGE MULTIPLIERS FOR RF ENERGY HARVESTING SYSTEM. Commun.Fac.Sci.Univ.Ank.Series A2-A3 Volume 61, Number 1, Pages 12-23 2019.
XV. Farid Khan, Farrokh Sassani and Boris Stoeber Copper foil-type vibration-based electromagnetic energy harvester 2010 J. Micromech. Microeng. 20 125006. https://doi.org/10.1088/0960-1317/20/12/125006
XVI. Hagerty, J.A., et al., Recycling ambient microwave energy with broad-band rectenna arrays. IEEE Transactions on Microwave Theory and Techniques, 2004. 52(3): p. 1014-1024.
XVII. Hamayun Khan, Sheeraz Ahmed, Rehan Ali Khan, S. Arhan Haider Shah, Zeeshan Najam, Hasnain Abbas, Asif Nawaz, Zubair Aslam Khan, : AN IOT BASED ENERGY OPTIMIZATION TECHNIQUE FOR ELECTRICAL EQUIPMENT’S USING WIRELESS SENSOR NETWORKS. J. Mech. Cont. & Math. Sci., Vol.-15, No.-8, August (2020) pp 628-646. DOI : 10.26782/jmcms.2020.08.00053
XVIII. Jia, J. and K.N. Leung, Improved active‐diode circuit used in voltage doubler. International Journal of Circuit Theory and Applications, 2012. 40(2): p. 165-173.
XIX. J. Zakis, D. Vinnikov, I. Roasto, and R. Strzelecki. Design guidelines of new step-up DC/DC converter for fuel cell powered distributed generation systems,” in Proceedings of the 8th International Symposium on Topical Problems in the Field of Electrical and Power Engineering, pp. 33–41, Parnu, Estonia, January 2010.
XX. Kavuri Kasi Annapurna Devi, Norashidah Md. Din, Chandan Kumar Chakrabarty. Optimization of the Voltage Doubler Stages in an RF-DC Convertor Module for Energy Harvesting. Circuits and Systems, 2012, 3, 216-222.
XXI. Khan, F.U.; Ahmad, S. Flow type electromagnetic based energy harvester for pipeline health monitoring system. Energy Convers. Manag. 2019, 200, 112089. https://doi.org/10.1016/j.enconman.2019.112089
XXII. Khan FU. Review of non-resonant vibration based energy harvesters for wireless sensor nodes. J Renewable Sustainable Energy. 2016;8:044702. http://doi.org/10.1063/1.4961370.
XXIII. Khajuria, R. and S. Gupta. Energy optimization and lifetime enhancement techniques in wireless sensor networks: A survey. in International Conference on Computing, Communication & Automation. 2015. IEEE.
XXIV. Muhammad Iqbal, Farid Ullah Khan. Hybrid vibration and wind energy harvesting using combined piezoelectric and electromagnetic conversion for bridge health monitoring applications. Energy Conversion and Management 2018 Vol. 172, Pages 611-618. https://doi.org/10.1016/j.enconman.2018.07.044
XXV. Makowski, M.S. and D. Maksimovic. Performance limits of switched-capacitor DC-DC converters. in Proceedings of PESC’95-Power Electronics Specialist Conference. 1995. IEEE.
XXVI. Mitcheson, P.D., et al., Architectures for vibration-driven micropower generators. Journal of microelectromechanical systems, 2004. 13(3): p. 429-440.
XXVII. N. M. Din, C. K. Chakrabarty, A. Bin Ismail, K. K. A. Devi, and W.-Y. Chen. DESIGN OF RF ENERGY HARVESTING SYSTEM FOR ENERGIZING LOW POWER DEVICES. Progress In Electromagnetics Research, Vol. 132, 49–69, 2012 .
XXVIII. Pillai, M.A. and E. Deenadayalan, A review of acoustic energy harvesting. International journal of precision engineering and manufacturing, 2014. 15(5): p. 949-965.
XXIX. Sakai, Y., et al., Highly efficient pulsed power supply system with a two-stage LC generator and a step-up transformer for fast capillary discharge soft x-ray laser at shorter wavelength. Review of Scientific Instruments, 2010. 81(1): p. 013303.
XXX. Samuel S. B. Hong, Rosdiazli Ibrahim, Mohd H. Md. Khir, Mohammad A. Zakariya, and Hanita Daud. WI-FI ENERGY HARVESTER FOR LOW POWER RFID APPLICATION. Progress In Electromagnetics Research C, Vol. 40, 69–81, 2013.
XXXI. Shaikh, F.K., S. Zeadally, and E. Exposito, Enabling technologies for green internet of things. IEEE Systems Journal, 2015. 11(2): p. 983-994.
XXXII. Shenck, N.S. and J.A. Paradiso, Energy scavenging with shoe-mounted piezoelectrics. IEEE micro, 2001. 21(3): p. 30-42.
XXXIII. Po-Hung Chen, Koichi Ishida, Xin Zhang, Yasuaki Okuma, Yoshikatsu Ryu, Makoto Takamiya, and Takayasu Sakurai. 0.18-V Input Charge Pump with Forward Body Biasing in Startup Circuit using 65nm CMOS. Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2010.
XXXIV. Tuna, G., et al., Energy harvesting techniques for industrial wireless sensor networks. inIndustrial Wireless Sensor Networks: Applications, Protocols, Standards, and Products, GP Hancke and VC Gungor, Eds, 2017: p. 119-136.
XXXV. T. Meng, H. Ben, D. Wang, and H. Huang. Starting strategies of three-phase single-stage PFC converter based on isolated fullbridge boost topology. Przeglad Elektrotechniczny, vol. 87, no. 3, pp. 281–285, 2011.
XXXVi. Vandana Niranjan, Maneesha Gupta. Low voltage four-quadrant analog multiplier using dynamic threshold MOS transistors. Microelectronics International Volume 26 • Number 1 • 2009 • 47–52.
XXXVII. W. U. Rahman and F. U. Khan, “Modeling and Simulation of Flow-Based Circular Plate Type Piezoelectric Energy Harvester for Pipeline’s Monitoring,” 2019 22nd International Multitopic Conference (INMIC), 2019, pp. 1-6, doi: 10.1109/INMIC48123.2019.9022755.
XXXVIII. W. Li, X. Xiang, C. Li, and X. He. Interleaved high step-up ZVT converter with built-in transformer voltage doubler cell for distributed PV generation system. IEEE Transactions on Power Electronics, vol. 28, no. 1, pp. 300–313, 2013.
XXXIX. Weiser, M., The Computer for the 21 st Century. Scientific American, 1991. 265(3): p. 94-105.
XL. Y.C. Wong, P.C. Tan, M. M. Ibrahim, A.R. Syafeeza, N. A. Hamid. Dickson Charge Pump Rectifier using Ultra-Low Power (ULP) Diode for BAN Applications. Journal of Telecommunication, Electronic and Computer Engineering Vol. 8 No. 9 September – December 2016.
View
Download