Journal Vol – 14 No -5, October 2019

HRD – Banks in the ICT Era a Focus on Private sector Banks

Authors:

Ashok Kumar Katta, P. SubbaRao, S. Venkata Ramana

DOI NO:

https://doi.org/10.26782/jmcms.2019.10.00076

Abstract:

The banking sector in India plays a vital role in the economic growth of the country. Hence, the performance of banks has got a decisive role in controlling the pace of economic development of the whole nation. Performance of banks, in turn, depends on the performance of their human resources (HR) – the most sensitive and most valuable among all resources of an organization. Effective management of HR along with proper adoption and utilization of technological advances particularly those in the field of Information and Communication Technology, (ICT) has become an imperative for banks for their survival and growth. Likewise, thrust on the promotion of bank products particularly using modern philosophies like e-CRM side by side with provision of excellent quality customer service is another imperative. At the centre of all these lies Human Resources (HR); because a well-trained and techno-savvy workforce alone can provide customer service matching with the expectations of today’s discerning customers. As India’s banking sector is passing through a highly turbulent world characterized by VUCA (Volatility, Uncertainty, Complexity, Ambiguity), this paper seeks to study the relative performance of the Old generation Private sector Banks (OPBs) based in Kerala with a focus on their HR productivity and allied HR-related performance parameters.

Keywords:

Old Private sector Banks (OPBs),ICT,CRM,HRM,Employee Productivity,

Refference:

I. Ashok Kumar. (2019), “Mutual Fund an Electronic Inference”, Eurasian
Journal of Analytical Chemistry, 47, 49-53.
II. Ashok Kumar. (2019), “Mutual Fund an Electronic Inference”, Eurasian
Journal of Analytical Chemistry, 47, 49-53.
III. Ashok Kumar. (2019), “Mutual Fund an Electronic Inference”, Eurasian
Journal of Analytical Chemistry, 47, 49-53.

IV. Ashok Kumar. (2019), “Mutual Fund an Electronic Inference”, Eurasian
Journal of Analytical Chemistry, 47, 49-53.
V. Ashok Kumar (2018), “Illicit Financial Flows on Africa’s Democratic Chain
Governance”, International Journal of Supply Chain Management, Vol 7, No
5, 894-902.
VI. Ashok Kumar (2018), “Illicit Financial Flows on Africa’s Democratic Chain
Governance”, International Journal of Supply Chain Management, Vol 7, No
5, 894-902.
VII. Ashok Kumar (2018), “Illicit Financial Flows on Africa’s Democratic Chain
Governance”, International Journal of Supply Chain Management, Vol 7, No
5, 894-902.
VIII. Ashok Kumar (2018), “Illicit Financial Flows on Africa’s Democratic Chain
Governance”, International Journal of Supply Chain Management, Vol 7, No
5, 894-902.
IX. Ashok Kumar (2018), “Illicit Financial Flows on Africa’s Democratic Chain
Governance”, International Journal of Supply Chain Management, Vol 7, No
5, 894-902.
X. Manukonda et al. (2019). What Motivates Students To Attend Guest
Lectures?. The International Journal of Learning in Higher Education.
Volume 26, Issue 1. 23-34.
XI. Official websites of the Reserve Bank of India (RBI), www.rbi.org.in
XII. Sivakoti Reddy, M., Venkateswarlu, N.(2019). Customer relationship
management practices and their impact over customer purchase decisions: A
study on the selected private sector banks housing finance schemes.
International Journal of Innovative Technology and Exploring Engineering.
8(7), pp. 1720-1728.
XIII. Sivakoti Reddy, M., Murali Krishna, S.M.(2019). Influential role of retail
service quality in food and grocery retailing: A comparative study between
traditional and multi-channel retailing. International Journal of Management
and Business Research. 9(2), pp. 68-73.
XIV. Y. V. Rao and Srinivasa Rao Budde. Banking Technology Innovations in
India: Enhancing Customer Value and Satisfaction. Indian Journal of Science
and Technology, Vol 8(33), DOI: 10.17485/ijst/2015/v8i33/78280, December
2015.1-10.

View Download

Enhancement of Non-Linear Generators to Calculate the Randomness Test for Frequency Property in the Stream Cipher Systems

Authors:

Ibrahim Abdul Rasool Hammood, Ayad Ghazi Naser Alshamri

DOI NO:

https://doi.org/10.26782/jmcms.2019.10.00077

Abstract:

In this paper, the key generators generated by using (Brüer generator, Geffe generator, and Linear generator), then improved these key generators (Brüerand Geffe). In this research was the focus on the frequency test and then compares the outputs with results in a chi-square.

Keywords:

Cryptography,Stream Cipher,Frequency,LFSR,

Refference:

I. C. Paar, J. Pelzl, 2010,”Understanding Cryptography”, Springer, Verlag
Berlin Heidelberg.
II. A. Klein, 2013, “Stream Ciphers”, Springer Verlag London.
III. Fardous Eljadi, 2017, “Dynamic Linear Feedback Shift Registers: A Review”,
Kuala Lumpur, Malaysia.
IV. Alice Reinaudo, 2015, “Empirical testing of pseudo random number
generators based on elliptic curves”, Linnaeus University, Sweden.
V. Yassir Nawaz, 2007, “Design of Stream Ciphers and Cryptographic
Properties of Nonlinear Functions”, University of Waterloo, Canada.
VI. Hossam El-din H. Ahmed, Hamdy M. Kalash, and Osama S. Farag Allah,
2005, “An Efficient Chaos-Based Feedback Stream Cipher (ECBFSC) for
Image Encryption and Decryption”, Menoufia University.
VII. M. Robshaw and O. Billet (Eds.), 2008, ” Design of a New Stream Cipher—
LEX”, Springer-Verlag Berlin Heidelberg.
VIII. Roy Ward, Tim Molteno, 2007, “Table of Linear Feedback Shift Registers”,
University of Otago.
IX. Abdullah Ayad Ghazi,Faez Hassan Ali,2018, “Robust and Efficient Dynamic
Stream Cipher Cryptosystem”,Iraqi Journal of Science,University of
Baghdad.
X. Xingyuan Wang, Xiaojuan Wang, Jianfeng Zhao, Zhenfeng Zhang, 2010,”
Chaotic encryption algorithm based on alternant of stream cipher and block
cipher “, Springer, Dalian University of Technology.

XI. Gordon Meiser, 2007,” Efficient Implementation of Stream Ciphers on
Embedded Processors”, Ruhr-University Bochum (Germany).
XII. Rusol M. Shaker Alzewary,Ayad G. Naser Al-Shammar,2016, “Designof
High Efficiency Non-linear Keys Generator Based on Shift Registers”, Iraqi
Journal of Science,University of Baghdad.

View Download

Estimation the Shape Parameter of (S-S) Reliability of Kumaraswamy Distribution

Authors:

A. S. Mohammed, Alaa M. Hamad, Abbas Najim Salman

DOI NO:

https://doi.org/10.26782/jmcms.2019.10.00078

Abstract:

In this paper dealt with estimating the reliability in the (S-S) stress-strength of Kumaraswamy function distribution using different estimation methods, Maximum likelihood, Moment method, Shrinkage method depend on to Monte Carlo simulation Comparisons between estimation methods have been using mean square error criteria.

Keywords:

Reliability,Stress-Strength (S-S),Kumaraswamy distribution,Maximum likelihood estimator,Moment estimator and Shrinkage estimator,

Refference:

I. A. N. Salman, T.A. Taha, On Reliability Estimation for the Exponential
Distribution Based on Monte Carlo Simulation, Ibn Al-Haitham Journal for
Pure and Applied science, 10.30526/2017, P.P.(409-419).
II. Dreamlee Sharma, Tapan Kumar Chakrabarty, On Size Biased
Kumaraswamy Distribution, Statistics, Optimization, and Information
Computing, Vol 4, Sep 2016, pp 252-264
III. Kumaraswamy, P. A Generalized probability density function fordoublebounded
random processes. Journal of Hydrology 1980,46(1), 79-88.
IV. Mostafa Mohie Eldin1, Nora Khalil2, Montaser Amein, Estimation of
parameters of the Kumaraswamy distribution based on general progressive type II censoring, American Journal of Theoretical and Applied Statistics,
2014; 3(6): 217-222.
V. Mohamed A. Hussian, Estimation of P[Y<X] for the class of Kumaraswamy-
G distributions, Australian Journal of Basic and Applied Sciences, 7(11) Sept
2013, Pages: 158-169.
VI. Muna Shaker Salman, Comparing Different Estimators of two Parameters
Kumaraswamy distribution, Journal of Babylon University/Pure and Applied
Science/ no.(2)/vol.(25):2017,395-402.
VII. Weerahandi, S., and Johnson, R.A.: Testing reliability in a stress-strength
model when X and Y are normally distributed. Technometrics, 1992; 38: 83–
91.

View Download

A Novel approach to genome editing using Cellular automata evolutions of adjoints sequences

Authors:

Rama Naga Kiran Kumar. K, Ramesh Babu. I

DOI NO:

https://doi.org/10.26782/jmcms.2019.10.00079

Abstract:

This paper proposes a novel method for genome editing using cellular automata evolutions of adjoints of Adenine, Thymine, Guanine, and Cytosine. The adjoints of the given a genome sequence are the characteristic binary string sequences. For example, the adjoint of Adenine of a given genome sequence is a binary string consisting of 0’s and 1’s where 1’s corresponds to the presence of Adenine in the genome sequence. So, one can have four adjoint sequences of Adenine, Thymine, Guanine, and Cytosine corresponding to a given genome sequence. Onedimensional three neighborhood binary value cellular automata rules can be applied to an adjoint sequence and the desired number of evolutions could be obtained. This rule is defined by a linear Boolean function and one can have 256 such linear Boolean functions. Genome editing is carried out by superimposing the evolved adjoint sequence on the original genome sequence or on its successive evolutions. In this manner, one can have four ways of genome editing using four adjoint sequences and evolutions.

Keywords:

Genome Editing,Cellular Automata,Evolutions of Adjoints,Linear Boolean functions,

Refference:

I. Carey, Nessa (2015). Junk DNA: A Journey Through the Dark Matter of the
Genome. Columbia University Press. ISBN 9780231170840.
II. Chris M. Rands, Stephen Meader, Chris P. Ponting and Gerton Lunter
(2014). “8.2% of the Human Genome Is Constrained: Variation in Rates of
Turnover across Functional Element Classes in the Human Lineage”. PLoS
Genet 10 (7): e1004525. doi:10.1371 /journal.pgen.1004525.
PMC 4109858. PMID 25057982.
III. Costa, Fabrico (2012). “7 Non-coding RNAs, Epigenomics, and Complexity
in Human Cells”. In Morris, Kevin V. Non-coding RNAs and Epigenetic
Regulation of Gene Expression: Drivers of Natural Selection. Caister
Academic Press. ISBN 1904455948.
IV. Dan Graur, Yichen Zheng, Nicholas Price, Ricardo B. R. Azevedo1,
Rebecca A. Zufall and Eran Elhaik (2013). “On the immortality of
television sets: “function” in the human genome according to the evolutionfree
gospel of ENCODE” (PDF). Genome Biology and Evolution5 (3):
578–90. doi:10.1093/gbe/evt028. PMC 3622293. PMID 23431001.
V. Doolittle, W. Ford (2013). “Is junk DNA bunk? A critique of ENCODE”.
Proc Natl Acad Sci USA110 (14): 5294–5300.
Bibcode:2013PNAS..110.5294D. doi:10.1073/pnas.1221376110.
PMC 3619371. PMID 23479647.
VI. Elgar G, Vavouri T; Vavouri (July 2008). “Tuning in to the signals:
noncoding sequence conservation in vertebrate genomes”. Trends Genet. 24
(7): 344–52. doi:10.1016/j.tig.2008.04.005. PMID 18514361.

VII. Ehret CF, De Haller G; De Haller (1963). “Origin, development, and
maturation of organelles and organelle systems of the cell surface in
Paramecium”. Journal of Ultrastructure Research. 9 Supplement 1: 1, 3–42.
doi:10.1016/S0022-5320(63)80088-X. PMID 14073743.
VIII. Gregory TR, Hebert PD; Hebert (April 1999). “The modulation of DNA
content: proximate causes and ultimate consequences”. Genome Res. 9 (4):
317–24. doi:10.1101/gr.9.4.317 (inactive 2015-02-01). PMID 10207154.
IX. Hawkins, JS.; Kim, H.; Nason, JD.; Wing, RA.; Wendel, JF. (Oct 2006).
“Differential lineage-specific amplification of transposable elements is
responsible for genome size variation in Gossypium”. Genome Res 16 (10):
1252–61. doi:10.1101/gr.5282906. PMC 1581434. PMID 16954538.
X. International Human Genome Sequencing Consortium (February 2001).
“Initial sequencing and analysis of the human genome”. Nature 409 (6822):
879–888. Bibcode:2001Natur.409..860L. doi:10.1038/35057062.
PMID 11237011.
XI. Li M, Marin-Muller C, Bharadwaj U, Chow KH, Yao Q, Chen C; Marin-
Muller; Bharadwaj; Chow; Yao; Chen (April 2009). “MicroRNAs: Control
and Loss of Control in Human Physiology and Disease”. World J Surg 33
(4): 667–84. doi:10.1007/s00268-008-9836-x. PMC 2933043.
PMID 19030926.
XII. Mattick JS, Dinger ME (2013). “The extent of functionality in the human
genome”. The HUGO Journal 7 (1): 2. doi:10.1186/1877-6566-7-2.
XIII. Morris, Kevin, ed. (2012). Non-Coding RNAs and Epigenetic Regulation of
Gene Expression: Drivers of Natural Selection. Norfolk, UK: Caister
Academic Press. ISBN 1904455948.
XIV. Marshall CR, Raff EC, Raff RA; Raff; Raff (December 1994). “Dollo’s law
and the death and resurrection of genes”. Proc. Natl. Acad. Sci. U.S.A. 91
(25): 12283–7. Bibcode:1994PNAS…9112283M.
doi:10.1073/pnas.91.25.12283. PMC 45421. PMID 7991619.
XV. Nelson, PN.; Hooley, P.; Roden, D.; Davari Ejtehadi, H.; Rylance, P.;
Warren, P.; Martin, J.; Murray, PG. (Oct 2004). “Human endogenous
retroviruses: transposable elements with potential?”. Clin Exp Immunol 138
(1): 1–9. doi:10.1111/j.1365-2249.2004.02592.x. PMC 1809191.
PMID 15373898.
XVI. Nielsen H, Johansen SD; Johansen (2009). “Group I introns: Moving in new
directions”. RNA Biol 6 (4): 375–83. doi:10.4161/rna.6.4.9334.
PMID 19667762.
XVII. Palazzo, Alexander F.; Gregory, T. Ryan (2014). “The Case for Junk
DNA”. PLoS Genetics10 (5): e1004351. doi:10.1371/journal.pgen.1004351.
ISSN 1553-7404.
XVIII. Pennisi, E. (6 September 2012). “ENCODE Project Writes Eulogy for Junk
DNA”. Science 337 (6099): 1159–1161.
doi:10.1126/science.337.6099.1159. PMID 22955811.
XIX. Petrov DA, Hartl DL; Hartl (2000). “Pseudogene evolution and natural
selection for a compact genome”. J. Hered. 91 (3): 221–7.
doi:10.1093/jhered/91.3.221. PMID 10833048.

XX. Piegu, B.; Guyot, R.; Picault, N.; Roulin, A.; Sanyal, A.; Saniyal, A.; Kim,
H.; Collura, K.; et al. (Oct 2006). “Doubling genome size without
polyploidization: dynamics of retrotransposition-driven genomic expansions
in Oryza australiensis, a wild relative of rice”. Genome Res 16 (10): 1262–
9. doi:10.1101/gr.5290206. PMC 1581435. PMID 16963705.
XXI. Ponting, CP; Hardison, RC (2011). “What fraction of the human genome is
functional?”. Genome Research21: 1769–1776. doi:10.1101/gr.116814.110.
PMC 3205562. PMID 21875934.
XXII. Ponicsan SL, Kugel JF, Goodrich JA; Kugel; Goodrich (February 2010).
“Genomic gems: SINE RNAs regulate mRNA production”. Current
Opinion in Genetics & Development 20 (2): 149–55. doi:10.1016/j.gde.
2010.01.004. PMC 2859989. PMID 20176473.
XXIII. Robin McKie (24 February 2013). “Scientists attacked over claim that ‘junk
DNA’ is vital to life”. The Observer.
XXIV. Sean Eddy (2012) The C-value paradox, junk DNA, and ENCODE, Curr
Biol 22(21):R898–R899.
XXV. Smith MA; et al. (June 2013). “Widespread purifying selection on RNA
structure in mammals”. Nucleic Acids Research 41 (17): 8220–8236.
doi:10.1093/nar/gkt596. PMC 3783177. PMID 23847102.
XXVI. The ENCODE Project Consortium (2012). “An integrated encyclopedia of
DNA elements in the human genome”. Nature 489 (7414): 57–74.
Bibcode:2012Natur.489…57T. doi:10.1038/nature11247. PMC 3439153.
PMID 22955616..
XXVII. Tutar, Y. (2012). “Pseudogenes”. Comp Funct Genomics 2012: 424526.
doi:10.1155/2012/424526. PMC 3352212. PMID 22611337.
XXVIII. Visel A, Rubin EM, Pennacchio LA (September 2009). “Genomic Views of
Distant-Acting Enhancers”. Nature 461 (7261): 199–205.
Bibcode:2009Natur.461..199V. doi:10.1038/nature08451. PMC 2923221.
PMID 19741700.
XXIX. Wahls, W.P.; et al. (1990). “Hypervariable minisatellite DNA is a hotspot
for homologous recombination in human cells”. Cell 60 (1): 95–103.
doi:10.1016/0092-8674(90)90719-U. PMID 2295091.
XXX. Waterhouse, Peter M.; Hellens, Roger P. (25 March 2015). “Plant biology:
Coding in non-coding RNAs”. Nature 520 (7545): 41–42.
doi:10.1038/nature14378.
XXXI. Walters RD, Kugel JF, Goodrich JA; Kugel; Goodrich (Aug 2009).
“InvAluable junk: the cellular impact and function of Alu and B2 RNAs”.
IUBMB Life 61 (8): 831–7. doi:10.1002/iub.227. PMC 4049031.
PMID 19621349.
XXXII. “Worlds Record Breaking Plant: Deletes its Noncoding “Junk” DNA”.
Design & Trend. May 12, 2013. Retrieved 2013-06-04.
XXXIII. Zheng D, Frankish A, Baertsch R; et al. (June 2007). “Pseudogenes in the
ENCODE regions: Consensus annotation, analysis of transcription, and
evolution”. Genome Res. 17 (6): 839–51. doi:10.1101/gr.5586307.
PMC 1891343. PMID 17568002.

 

View Download