Authors:
Fatimah Abdul – Hammeed Jawad Al – Bermani,Mohammad Huseen Abdul – Hammeed Jawad Al – Bermani,DOI NO:
https://doi.org/10.26782/jmcms.2024.05.00005Keywords:
Frobenius,High–Dimensional,Minimum Regularized Covariance Determinant,Mahalanobis,Oracle,Parameter regulation,Shrinkage,Abstract
Estimating the variance matrix has an important role in statistical applications and conclusions, in high–dimensional matrices if the number of variables is greater than the number of observations P > n, the traditional statistical methods are not reliable because they give uncontrolled estimates. Shrinkage methods are used to estimate the high–dimensional variance matrix. In this research, the high–dimensional variance matrix was estimated using the robust Nonparametric method Minimum Regularized Covariance Determinant (MRCD), which is based on Mahalanobis distance, and compared with the variance matrix estimated by the Oracle method, which is based on the Frobenius criterion.Refference:
I. F. Abdul–Hammeed, and M. Sabah, : ‘Compared with genetic algorithm Fast-MCD-Nested Extension and neural network multilayer Back propagation’. JOURNAL OF ECONOMIC & ADMINISTRATIVE SCIENCE. Jun. No 22(89), 381-395, (2016).
II. F. Virgile, V. Gael, T. Benjamin, and Bertrand Thirion. : ‘Detecting outlying Subjects in High-Dimensional Neuroimaging Datasets with Regularized Minimum Covariance Determinant’. pp. 264-271. https://hal.inria.fr/inria-00626857. 10.1007/978-3-642-23626-6_33
III. I. Clifferd, : ‘High Dimensional Covariance Matrix Estimation’. Department of Statistics, London School. http://stats.lse.ac.uk.
IV. J. Brian Williamson, : ‘Shrinkage Estimators for high-dimensional Covariance matrices’. POMONA COLLEGE , April 4, (2014). 10.1109/ICASSP.2009.4960239
V. K. Jan, and H. Jaroslav, : ‘Robust Regularized Discriminant Analysis Based on Implicit Weighting’. Technical report No.v-1241. December (2016). http://www.nusl.cz/ntk/nusl-262425
VI. K. Jan, T. Jurjen Duintjer, and S. Anna, : ‘Robustness of High-Dimensional Data’.
Mining.Kalina@cs.cas.cz. https://www.semantis/scholarory
VII. L. Olivier, W. Michael, : ‘Shrinkage Estimation of large covariance
matrices: keep it simple’. statistician. university of Zurich . Journal of Multivariate Analysis. 186, (2021) 104796. 10.1016/j.jmva.2021.104796
VIII. M. Abdul – Hammeed,and F. Abdul – Hammeed, : ‘Estimated between the two-stage summation shrinkage for the variance of a normal distribution and for equal sizes of the two samples’. Baghdad science journal. Jun. No 1009, (2011).
IX. M. Hubert, and M. Debruyne, : ‘Minimum Covariance Determinant’. Wiley Interdisciplinary Reviews:Computional Statistics. 2(2010). Pp.- 36-34. https://wis.kuleuven.be/stat/robust/papers/2010/wire-mcd.pdf
X. O. Ledoit ,and M. Wolf , : ‘Quadratic Shrinkage for Large Covariance Matrices’. University of Zurich , November (2019). http://dx.doi.org/10.2139/ssrn.3486378
XI. O. Ledoit ,and M. Wolf. : ‘A well-conditioned estimator for large-dimensional covariance matrices’. Journal of Multivariate Analysis. 88(2) (2004), pp. 365-411. 10.1016/S0047-259X(03)00096-4
XII. R. Maronnan, and R.H. Zamar. : ‘Robust Estimates of Location and Dispersion for High-Dimensional Datasets’. Technometrics. 44(4), 307-317 (2002). https://www.jstor.org/stable/1271538
XIII. P. Rousseeuw , S . Vanduffel and T. Verdonckl. : ‘Minimum Regularized Covariance Determinant Estimatimater’. june 1. (2018). **
XIV. P. Rousseeuw, V. Steven, and V. Tim. : ‘The Minimum Regularized Covariance Determinant Estimator’. ar Xiv:1701.07086v3, November 29 (2018). 10.2139/ssrn.2905259
XV. P. Rousseeuw, and D. Van. : ‘Afast algorithm for the Minimum Covariance Determinant estimator’. Technometrics. 41(3), (1991), pp. 212-223. doi.org/10.2307/1270566
XVI. Won J. H, Lim J. Kim S., J. Rajaratnan. : ‘Condition-number regularized covariance estimation’. J. R. Stat. Ser B (stat.Methodol) 75 (3), (2013) 427-450. doi.org/10.1111/j.1467-9868.2012.01049.x
XVII. Yilun C., Ami wiesel, Alfred O. Hero III. : ‘Shrinkage Estimtion of high Dimensional Covariance Matrices’. International Conference on Acoustics, Speech and Signal Processing. April (2009) 10.1109/ICASSP.2009.4960239
XVIII. Yilun C., Ami Wiesel, Alfredo. : ‘Robust Shrinkage Estimtion of high Dimensional Covariance Matrices’. arXiv:1009.5331v1 [stat.ME]. 27 sep (2010). 10.1109/TSP.2011.2138698
XIX . Zongliang Hu, Kai Dong, Wenlin Dai and Tiejan Tong. : ‘Acomparison of Methods for Estimating the Determinent of High-Dimensional Covariance Matrix’. The International Journal of Biostatistics. September, (2017). doi.org/10.1515/ijb-2017-0013