Authors:
Arijit Mishra,Pinku Chandra Dey,Kamal Jyoti Barman,DOI NO:
https://doi.org/10.26782/jmcms.2024.04.00004Keywords:
Zumkeller number,banana graph,friendship graph,firecracker graph,tadpole graph,graph labeling.,Abstract
Let G be any graph. Then a one-one function f:V→ N is said to be a k-Zumkeller labeling of G if the induced function f^*: E→N defined by f^* (xy) =f(x)f(y) satisfies the following conditions: (i) For every xy∈E, f^* (xy) is a Zumkeller number. (ii) |f^* (E)|=k, where |f^* (E)| denotes the number of distinct Zumkeller numbers on the edges of G. In this paper, we prove the existence of k-Zumkeller labeling for certain graphs like tadpole, banana, friendship, and firecracker graphs.Refference:
I. B. J. Balamurugan, K. Thirusangu, DG Thomas (2013), : ‘Strongly multiplicative Zumkeller labeling of graphs’. International Conference on Information and Mathematical Sciences, Elsevier, 349-354.
II. B. J. Balamurugan, K. Thirusangu, DG Thomas (2014), : ‘Zumkeller labeling of some cycle related graphs’. Proceedings of International Conference on Mathematical Sciences (ICMS – 2014), Elsevier, 549-553.
III. B. J. Balamurugan, K. Thirusangu and D.G. Thomas, : ‘Zumkeller labeling algorithms for complete bipartite graphs and wheel graphs.’ Advances in Intelligent Systems and Computing, Springer, 324 (2014), 405-413. 10.1007/978-81-322-2126-5_45
IV. B. J. Murali, K. Thirusangu, R. Madura Meenakshi, : ‘Zumkeller cordial labeling of graphs’. Advances in Intelligent Systems and Computing, Springer, 412 (2015), 533-541.
V. B. J. Balamurugan, K. Thirusangu and D.G. Thomas, : ‘Algorithms for Zumkeller labeling of full binary trees and square grids’. Advances in Intelligent Systems and Computing, Springer, 325 (2015), 183192.
VI. B. J. Balamurugan, K. Thirusangu and D.G. Thomas, : ‘k-Zumkeller Labeling for Twig Graphs’. Electronic Notes in Discrete Mathematics 48 (2015) 119126.
VII. F. Harary, : in Graph theory, Addison-Wesley, Reading Mass (1972).
VIII. I. Cahit, : ‘On cordial and 3-equitable labeling of graph’. Utilitas Math., 370 (1990), 189-198.
IX. J.A. Gallian, : ‘A dynamic survey of graph labeling’. Electronic J. Combin., 17 (2014), DS6.
X. Rosa, : ‘On certain valuations of the vertices of a graph’. N. B. Gordan and Dunad, editors, Theory of graphs, International Symposium, Paris (1966) 349359.
XI. S. Clark, J. Dalzell, J. Holliday, D. Leach, M. Liatti and M. Walsh, : ‘Zumkeller numbers’. Mathematical Abundance conference at Illinois State University, 18.04.2018.
XII. Y. Peng and K. P. S. Bhaskara Rao, : ‘On Zumkeller numbers’. J. Number Theory, 133(4) (2013), 1135-1155. 10.1016/j.jnt.2012.09.020