LINEAR TREND LINE ANALYSIS BY THE METHOD OF LEAST SQUARE FOR FORECASTING RICE YIELD IN BANGLADESH

Authors:

Saddam Hossain,Suman Kar,Mohammad Asif Arefin,Md. Kawsar Ahmed Asif,Hossain Ahmed5,

DOI NO:

https://doi.org/10.26782/jmcms.2022.12.00003

Keywords:

Least Square Method,Linear Trend Line,Forecasting,Time series,Bangladesh,

Abstract

The method of curve fitting by the principle of the Least Square (L.S) method is a relevant and well-received method of trend analysis, especially to make a project for the future time. The Least Square (L.S) method helps to fit mathematical functions to a given data set. For this research, we accumulated data from the Yearbook of Agricultural Statistics of Bangladesh for the year 2007-08 to 2019-20 with the help of the Bangladesh Bureau of Statistics (BBS) website. We arranged the data according to the proposed method and graphically represented it. This research aimed to forecast the production of rice in Bangladesh with trend line analysis by the method of Least Square (L.S) for the years 2020-21 to 2024-25. As a result, we found an upward trend line for the production of rice in Bangladesh. Therefore the production will be maximum in the year 2024-25.

Refference:

I. Abdulkabir, M., Tunde, R. S., & Edem, U. A. (2015). Trend analysis on road traffic accident in Nigeria. Science Innovation, 3(5), 52-57.
II. Adhikari, R., & Agrawal, R. K. (2013). An introductory study on time series modeling and forecasting. arXiv preprint arXiv:1302.6613.
III. Alam, M. S., Kalpoma, K., Karim, M. S., Al Sefat, A., & Kudoh, J. I. (2019, July). Boro Rice Yield Estimation Model Using Modis Ndvi Data for Bangladesh. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 7330-7333). IEEE.
IV. Ara, J., Md. Moheuddin, M., Hossain, S., & Abdus Sattar Titu, M. (2020). A mathematical study of break-even analysis based on dairy farms in Bangladesh. International Journal of Economic Behavior and Organization, 8(2), 38. https://doi.org/10.11648/j.ijebo.20200802.13
V. Athiyarath, S., Paul, M., & Krishnaswamy, S. (2020). A comparative study and analysis of time series forecasting techniques. SN Computer Science, 1(3). https://doi.org/10.1007/s42979-020-00180-5
VI. Awal, M. A., & Siddique, M. A. B. (2011). Rice production in Bangladesh employing by ARIMA model. Bangladesh Journal of Agricultural Research, 36(1), 51-62.
VII. Bangladesh Bureau of Statistics. Bangladesh Bureau of Statistics-Government of the People’s Republic of Bangladesh. (n.d.). Retrieved December 15, 2021, from http://bbs.gov.bd/site/page/3e838eb6-30a2-4709-be85-40484b0c16c6/-
VIII. Bangladesh Rice Research Institute. Bangladesh Rice Research Institute-Government of the People’s Republic of Bangladesh. (n.d.). Retrieved December 15, 2021, from http://www.brri.gov.bd/
IX. Bangladesh. Ricepedia. (n.d.). Retrieved December 15, 2021, from https://ricepedia.org/index.php/bangladesh
X. CAI, S., ZHANG, H., CHEN, H., & SHA, J. (2007). Research of piecewise cubic curve-fitting method based on least-square principle. Science technology and Engineering, 3.
XI. Chatfield, C. (2000). Time-series forecasting. CRC press.
XII. Chen, G., Ren, Z. L., & Sun, H. Z. (2005). Curve fitting in least-square method and its realization with Matlab. Ordnance industry automation, 3, 063.
XIII. Chen, L., & Zheng, Y. (2012). Study on curve fitting based on least square method. Journal of Wuxi Institute of Technology, 11(5), 52-55.
XIV. De Gooijer, J. G., & Hyndman, R. J. (2006). 25 years of time series forecasting. International journal of forecasting, 22(3), 443-473.
XV. Finance Division, Ministry of Finance. Finance Division, Ministry of Finance-Government of the People\’s Republic of Bangladesh. (n.d.). Retrieved December 15, 2021, from https://mof.gov.bd/site/page/44e399b3-d378-41aa-86ff-8c4277eb0990/BangladeshEconomicReview
XVI. Hossain, M. A., Uddin, M. N., Hossain, M. A., & Jang, Y. M. (2017, October). Predicting rice yield for Bangladesh by exploiting weather conditions. In 2017 International Conference on Information and Communication Technology Convergence (ICTC) (pp. 589-594). IEEE.
XVII. Hossain, M. M., & Abdulla, F. (2015). Jute production in Bangladesh: A time series analysis. Journal of Mathematics and Statistics, 11(3), 93–98. https://doi.org/10.3844/jmssp.2015.93.98
XVIII. Kabir, M. S., Salam, M. U., Chowdhury, A., Rahman, N. M. F., Iftekharuddaula, K. M., Rahman, M. S., … & Biswas, J. K. (2015).Rice vision for Bangladesh:2050 and beyond. Bangladesh Rice Journal, 19(2),1-18.
XIX. Kabir, M. S., Salam, M. U., Islam, A. K. M. S., Sarkar, M. A. R., Mamun, M. A. A., Rahman, M. C., … & Rahman, N. M. F. (2020). Doubling rice productivity in Bangladesh: A way to achieving SDG 2 and moving forward. Bangladesh Rice Journal, 24(2), 1-47.
XX. Karmaker, C. L., Halder, P. K., & Sarker, E. (2017). A study of time series model for predicting jute yarn demand: Case study. Journal of Industrial Engineering, 2017, 1–8. https://doi.org/10.1155/2017/2061260
XXI. Kim, K. J. (2003). Financial time series forecasting using support vector machines. Neurocomputin, 55(1-2), 307-319.
XXII. Mahmood, R., Meo, M., Legates, D. R., & Morrissey, M. L. (2003). The CERES-Rice model-based estimates of potential monsoon season rainfed rice productivity in Bangladesh. The Professional Geographer, 55(2), 259-273.
XXIII. Miller, J. L., McCahon, C. S., & Bloss, B. K. (1990). Food production forecasting with simple time series models. Hospitality Research Journal, 14(3), 9–21. https://doi.org/10.1177/109634809101400303
XXIV. Paul, A., Bhowmik, R., Chowdary, V. M., Dutta, D., Sreedhar, U., & Sankar, H. R. (2017). Trend analysis of time series rainfall data using robust statistics. Journal of Water and Climate Change, 8(4), 691–700.
XXV. Salam, M. A., Ross, L. G., & Beveridge, C. M. M. (2003). A comparison of development opportunities for crab and shrimp aquaculture in southwestern Bangladesh, using GIS Modelling. Aquaculture, 220(1-4), 477–494. https://doi.org/10.1016/s0044-8486(02)00619-1
XXVI. Sanwlani, M., & Vijayalakshmi, M. (2013). Forecasting sales through time series clustering. International Journal of Data Mining & Knowledge Management Process, 3(1), 39.
XXVII. Sarker, M. A. R., Alam, K., & Gow, J. (2012). Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data. Agricultural Systems, 112, 11-16.
XXVIII. Seber, G. A., & Lee, A. J. (2012). Linear regression analysis (Vol. 329). John Wiley & Sons.
XXIX. Shil, R. N., & Debnath S. C. (2001). An introduction to the theory of statistics. M. Shil & A. Debnath.
XXX. Weatherford, L. R., & Kimes, S. E. (2003). A comparison of forecasting methods for Hotel Revenue Management. International Journal of Forecasting, 19(3), 401–415. https://doi.org/10.1016/s0169-2070(02)00011-0

View Download